

Paul Jorden

e2

13 Oct 2009

Detectors for Astronomy 2009, Garching

e2V

Carter L3Vison (electron-multiplying; EMCCD) sensors

- High-rho sensors
- CMOS/APS
- Other new CCDs

Large format scientific sensor

- Format: 1632 X 1608; Full Frame architecture
- Image size: 26 X 26 mm
- Pixels: 16 X 16 μm
- Pixel rate; 3-20 MHz (depends on output, and required settling time)
- Number of outputs: Two: one EM-type; one normal low noise
 QE: backthinned for high QE
- Ceramic package

Designed for scientific use. Limited availability.

L3 (electron-multiplying) sensors- 1b New devices: CCD207-40

L3 (electron-multiplying) sensors- 2 New devices: CCD251

A new sensor in the L3 (EMCCD) family-Samples (backthinned) due Dec-2009

Format:
Image size:
Pixels:
Pixel rate;
Number of outputs:
QE:
Frame rate:
Ceramic package

1024 X 1024; FT architecture 8 X 8 mm 8 X 8 µm >30 MHz one, EM-type; sub-electron noise backthinned for high QE 35 fps

Some performance improvements designed (ageing etc)

Designed for scientific & camera use.

L3 (electron-multiplying) sensors- 3 New devices CCDxxx (planned)

Large-format, multi-output scientific L3 sensor New custom design; projected start due ~ 2Q 2010

➡Format:	2048 X 2048 (TBC); FT architecture
Image size:	30.7 X 30.7 mm
Pixels:	15 X 15 μm
Pixel rate;	15 MHz (TBC)
Outputs:	two L3 gain, plus two normal low noise (TBC)
Frame rate:	6 fps, from L3 outputs
⊃QE	Backthinned for high QE; deep depletion TBC
Buttable package	TBC

"Stitchable" design; other formats possible

L3 (electron-multiplying) sensors- 4 CCD220

•240 x 240 pixels; split FT format
•24 X 24 μm pixels; 5.8 X 5.8 mm image
•100% fill factor
•Back-illuminated for high QE
•Deep depletion (red) variant
•High frame rates (1000 fps nominal)
•8 L3VisionTM outputs; sub-electron noise
•Integral Compact Peltier package

ESO/ Opticon project: See Feautrier & Downing talks (Wed am)

New Product development L3C216 (L3 EM camera)

- ⇒ 9.0 X 6.6 mm image
- CameraLink interface
- Backthinned CCD
- Manual or automated gain control with flexible user defined settings
- 525 line or 625 line formats

Provides real time images down to overcast starlight outperforming intensified camera.

➡ L3 (electron-multiplying) sensors

- High-rho sensors
- CMOS/APS
- Other new CCDs

High-rho sensors- 1 Introduction

e2

High-rho sensors- 2 LSST system

e2V

4K x 4K pixels on 10μm centers 16 readouts/sensor 330 nm to 1070 nm response 1 second read time

> 9 CCD's assembled into one raft 21 rafts in the camera

The 63cm diameter focal plane has 189 CCD's arranged on 21 modular rafts

Acknowledgements to LSST

From AAS Jan 2008

High-rho sensors- 2 LSST CCD concepts

e2

High-rho sensors- 2 LSST CCD outline

Sensor

4K x 4K CCD sensors 2 contiguous imaging areas 2K x 4K 2 sec readout at 500 kHz → ~1M pixels per output Fill factor must approach unity, which favors a fairly large area footprint of ~16 cm² 500 pixels/segment for blooming control of bright stars Required flatness across sensor: 5 microns

Key parameters

 $10 X 10 \,\mu m$ pixel size

16 parallel outputs for short read-time

Backthinned for UV to NIR response

100 µm thick for high red response and maintain good PSF

Backside bias with high resistivity silicon

4-side butting with minimal gap- custom package development

Demanding flatness and precision height specification

[F/1.2 across 3.5 deg FOV]

High-rho sensors- 3 Bulk CCDs

e2

High-rho sensors- 3 Bulk CCDs

e)

- Previous generations of device demonstrated high-rho QE and low noise.
- New design of a true scientific sensor, with the same noise as other standard CCDs
- A new family of "high-rho" sensors: CCD261

High-rho sensors- 4

- Enhanced red sensitivity; substrate bias to backside
- 2k4k first device: samples due- end 2009

High-rho sensors- 4 CCD261-84

Number of pixels	2048(H) x 4104(V)
Pixel size	15 µm square
Image area	30.7 mm x 61.6 mm
Outputs	2
Package size	31.9 mm x 66.6 mm
Package format	Invar metal package with PGA connector
Focal plane height, above base	14.0 mm
Connectors	40-pin PGA
Flatness	20 µm p-v
Amplifier responsivity	6 µV/e⁻
Readout noise	2 e⁻ at 20 kHz
Maximum data rate	~1 MHz
Image pixel charge storage	230,000 e-
Dark signal	0.01 e ^{-/} pixel/hour (at 153K)

A new family of "high-rho" sensors 2k4k first device

Enhanced red sensitivity; substrate bias to backside

High-rho sensors- 4 CCD261-84

Functions (pins)	
BSS	Back-side bias
B3	Image phase
B1	Image phase
B2	Image phase
A3	Image phase
A1	Image phase
A2	Image phase
TGA	Transfer gate
ØRE	Reset clock
RDE	Reset drain
LSS	Local Vss
OSE	Output source
ODE	Output drain
OGE	Output gate
SWE	Summing well
GD	Guard drain
E2	Serial clock
E1	Serial clock
EF3	Serial clock
F2	Serial clock
F1	Serial clock
SWF	Summing well
OGF	Output gate
ODF	Output drain
OSF	Output source
RDF	Reset drain
ØRF	Reset clock

Similar format, same package style, same connector, and similar pin function as the CCD44-82

e2V

High-rho sensors- 4

CCD261

"Stitchable" building blocks **Other formats planned: 4-output variants** 4k X 4K formats **FT** variants **Other sizes CCD260** variant: Larger charge capacity; lower

responsivity (3 µV/e-)

CMOS/APS e2v BI CMOS

CMOS/APS-1 ev76c454

Typical Performances

Electro-optical performances

Sensor characteristics		
Resolution	pixels	838 (H) x 640 (V)
lmage size	inches	1/2.9
Pixel size (square)	μm	5.8 x 5.8
Aspect ratio		4/3
Max frame rate	fps	60 @ Full format 80 @ VGA format
Pixel rate	Mpixels / s	48
	Pixel perform	mance
Bit depth	bits	8
Dynamic range	dB	>52 (linear) >100 (HDR mode)
SNR max	dB	>40
Responsivity	LSB ₈ (nJ/cm ²)	15
	Mechanical & elect	rical interface
Power supplies	V	3.3 & 1.8
Power consumption Functional Standby	mW µW	80 40

Spectral response & Quantum efficiency Gain = 1

Key Features

- ------> Output format 8 bits parallel
- -----> Operating temperature [-30° to +65°C]

Applications

- -----> Surveillance IP/CCTV cameras
- -----> Biometric/medical imaging

CMOS/APS-1 ev76c454

Sensor architecture

600 700 800 900 1000 1100

Wave length [nm]

10% 0%

400 500

CMOS/APS-2 ev76c560

Key Features

- ···
 Global shutter for sharp images of fast moving objects
- ----- Rolling shutter allowing true CDS and global reset for best SNR
- ···· Multiple simutaneous regions of interest [4 separate windows]
- ↓ Linear dynamic range 62dB @ 25°C with possible HDR modes
- ---- Low power consumption

- ···
 Package : CLCC 48 12.7x12.7mm
- ----- SPI control

Typical Applications

- ---- Intelligent cameras
- CCTV/IP surveillance cameras
- ···· Industrial machine vision
- -----> Barcode reading/scanners
- ···} Biometric and medical imaging
- ---- HD camcorders

Sensor block diagram

•Electronic rolling shutter and electronic global shutter

•High-readout speed of 60 fps in full resolution.

- •Multi ROI and histogram output embedded on-chip
- •Very low power consumption (battery powered use)

CMOS/APS-2 ev76c560

Sensor characteristics

Sensor Characteristics		
Resolution	pixels	1280 (H) x 1024 (V)
lmage size	inches	1/1.8
Pixel size (square)	μm	5.3 X 5.3
Aspect ratio		5 / 4
Max frame rate	fps	60 @ Full format >100 @ VGA format
Pixel rate	Mpixels/s	90 to 120

Pixel performa	nce	
Bit depth	bits	10
Dynamic range	dB	66 (linear) ›100 (HDR mode)
SNR max	dB	42
Responsivity	LSB10/(nJ/cm²)	48

First samples: 6.5 e- rms noise

Samples made

e2

Designed for backside illumination

Spectral response & Quantum efficiency

CMOS/APS- 3 Hyperspectral Imager (for space)

CMOS/APS- 3 Hyperspectral Imager

Device designed to achieve the difficult combination of:

 \rightarrow fully pipelined synchronous shutter

 \rightarrow in a standard CMOS technology, yet

-with high resistivity thick epi -with maximum QE in backside illumination.

 \rightarrow CDS operation.

 \rightarrow Programmable sensitivity row by row

Hyperspectral imaging (HSI), benefits from CMOS:

SVery large difference in intensity between the weakest and brightest spectral lines

The use of CMOS technology removes the frame-shift smear that can produce significant crosstalk

Coptimum performance from all spectral lines by flexible integration time and programmable sensitivity.

High frame rate and random access to lines of interest

SBSI compatible, radiation tolerance etc.

CMOS/APS- 3 Hyperspectral Imager- key specifications

Resolution	1024 x 256 (n*512 x 256)
Pixel pitch	24µm
Number of spectral bands	256
Readout speed	250 frames per second
ROI, windowing	Random access in Y-direction (spectral direction) only
Full Well charge for 1% linearity	100ke- and 300ke- (programmable)
Line-by-line programmable charge conversion factor	12fF or 13 μV/e ⁻ 36fF or 4 μV/e ⁻
Total noise	<50 e ⁻ _{RMS} in basic mode without CDS <20 e ⁻ _{RMS} with CDS
QE	>90% in VIS(+NIR)

e2

CMOS/APS-3 **HSI** predicted **QE**

APS devices operate at 2 or 3V

Depletion depth is small

100 ohm-cm \rightarrow 5 µm

500 ohm-cm \rightarrow 12 µm

[Needs high resistivity for good red QE and good blue PSF]

CMOS/APS- 3 HSI demo chip status

The design is complete-

Multiple operation modes are possible and are being explored:
 Rolling or pipelined synchronous shutter
 CDS operation or double sampling or direct readout
 NDR modes, even only for specific lines, and other HDR modes
 Spectral line-wise sensitivity programming and random access

Photodiode and CMOS technology
 PIN diode in BSI: highest possible VIS+NIR QE

- Migrate to buried/pinned photodiode:
 - fully depletable (CDS in all operation modes)
 - Slow dark current as shielded from interface generation centers.

Manufacture about to start

CMOS/APS- 4 CMOS space demonstrator (Cobra-2M)

Number of pixels
Pixel Size
Image area
Optical Fill factor
Conversion gain
Dynamic range
Data rate
Connectors
Power consumption

1415(H) x 1430(V) 14.81 μm x 11.53 μm 20.96 mm x 16.49 mm 65% 4.75 μV/e 0.98V 10 MHz Pin Grid Array (PGA) 50mW

CMOS/APS- 5 Wavefront sensor concept

Overview of main requirements

⇒Format:

⇒Frame rate:

Readout noise:

⊃QE:

>1024 X 1024 pixels
24 X 24 µm nominal
700 fps nominal
< 3 e- rms
90% at 590 nm

Low dark current

⇒Good PSF

⇒Good pixel non-uniformity and cosmetics

Integral Peltier-cooled package (desirable)

Only an Active pixel sensor (APS) can meet this format/frame-rate requirement Backthinned for high QE, very low readout noise

The APS sensor should achieve the speed (700 fps) and low noise (<3 e-) from such a large area

CMOS/APS-5 WFS demo device photos

Illustration of one 24 X 24 µm pixel

e2

⇒Wafer fab is outsourced. Design expertise is established (and rapidly developing)- with a team of over 20 designers at e2v

CMOS development

e2v has very extensive IP already developed in CMOS imaging

Expertise includes

- ⇒ 3T : rolling shutter
- ➡ 4T : low noise-rolling shutter
- ⇒ 5T : global shutter (99.7% efficiency) with ROI capability
- from 2.2 μm (Telecom) to 19 μm (Medical)
- Initial focus has been on dental and industrial now moving to Space
- Devices from 3 foundries have been backthinned results all look good
- Significant benefit from volume requirements for dental & industrial imaging
- Several space CMOS programmes in progress; more planned.
- Multiple development strands: (backthinning; space qualification, low noise,..)

CMOS Backthinning

wafers have been thinned from three foundries. All behave as expected. epi starting thickness (thinner) gave lower QE than CCDs.

Further work is in progress using epi of different starting thickness (12µm)

- Backthinned demonstrators are available of the 'Jade' sensor
- Next step is to space qualify a backthinned CMOS sensor

Initial results from a non-optimised device are shown on the next slide (made on standard epi)

CMOS/APS ev76c454 backthinned results

2009 data-

Predicted and measured spectral response

Device backthinnned with 'basic' process; designed for 'red' wavelength use

 $8.5 \,\mu m$ thick silicon

CMOS Backthinning results (Cobra2M)

Other new CCDsa progression of sizes

e2

Thank you for your attention

Thanks to many others for providing material used here-

LSST, Caeleste, Astrium,

Peter Pool, Paul Jerram, Andrew Pike, and colleagues at e2v

Paul.Jorden@e2v.com