Hyper Suprime-Cam

Satoshi Miyazaki

National Astronomical Observatory of Japan

Presentation at "Detectors for Astronomy 2009" ESO Garching 16 October 2009

HSC Collaboration

National Astronomical Observatory of Japan

University of Tokyo (J)

KEK (J)

ASIAA (Taiwan)

Princeton University (US)

Mitsubishi Electric Canon Hamamatsu Photonics

MIT/LL CCID-20

Burke & Luppino et al.

Co-planarity

The correction procedure

- Employ a buffer block between CCD and cold plate
- Height measurement using laser displacement meter
- Insert thin metal foils with appropriate thickness
- Infusion of <u>epoxy</u> adhesive

Jig to align CCD and block

Mosaicing

Growth of CCD mosaics

Illustration of large focal plane sizes, from Luppino 'Moore's' law

Focal plane size doubles every 2.5 years

Strength of Suprime-Cam

Wide Field Corrector

Prime Focus Unit

Superb

Image Quality 11

Opt-mechanics were built by experienced Japanese firms

HST 'wide-I' continuum HST WFPC2 (All FOV)

HSC

NB816 narrowband Suprime-Cam (FOV/100)

High Redshift Galaxies Hunt

1 11.0 (

CO

0000)

Table 1: The most distant galaxies with measured redshift (as of Sep.14, 2006).							
Rank	Identification	Coordinates	Redshift	$Distance^{\#}$	Paper	Publishing date	
1	IOK-1	J132359.8+272456	6.964	12.8826	Iye et al.	Sep. 14, 2006	
2	SDF ID1004	J132522.3+273520	6.597	12.8250	Taniguchi et al.	Feb, 25, 2005	
3	SDF ID1018	J132520.4 + 273459	6.596	12.8248	Kashikawa et al.	Apr. 25, 2006	
4	SDF ID1030	J132357.1+272448	6.589	12.8238	Kashikawa et al.	Apr. 25, 2006	
5	SDF ID1007	J132432.5+271647	6.580	12.8222	Taniguchi et al.	Feb. 25, 2005	
6	SDF ID1008	J132518.8+273043	6.578	12.8219	Taniguchi et al.	Feb. 25, 2005	
6	SDF ID1001	J132418.3 + 271455	6.578	12.8219	Kodaira et al.	Apr. 25, 2003	
8*	HCM-6A	J023954.7-013332	6.560	12.8189	Hu et al.	Apr. 1, 2002	
9	SDF ID1059	J132432.9+273124	6.557	12.8184	Kashikawa et al.	Apr. 25, 2006	
10	SDF ID1003	J132408.3+271543	6.554	12.8178	Taniguchi et al.	Feb.25, 2005	

1 1 1

Distance in billion light years calculated for a model of the Universe that has an age 13.66 billion years.
* This object was discovered by Keck telescope. All the rest were discovered by Subaru Telescope in the Subaru Deep Field.

- 1. Large Aperture
- 2. Wide Field of View
- 3. Superb image quality
- 4. High QE in red

WL Dark Matter Halo Search Ask Google -3 -3.5 0 -4 Miyazaki dark matter -4.5 υr 00.0 50 00.0

Javazzi a Juucali iz

Upgrade of Suprime-Cam

Upgrade path

Large Aperture
 Wide Field of View
 Superb image quality
 High QE in red

Wider keep it Higher

NAOJ-Hamamatsu Collaboration

1994 - 1996 Back Illuminated small CCD

1996 - 1998 2k4k Front illuminated CCD

1999 - 2008 BI 2k4k pch CCD

1998

Signal is carried by hole. 19

HPK p-ch CCD

Package Structure

Quantum Efficiency

HSC QE Improvement Plan

Reflection Efficiency Calculation at Double Layer AR-Coating

Dark Current

25

Charge Diffusion

Expected Charge diffusion: $\sigma_D = 7 \mu m, t = 200 \ \mu m$

FWHM [" λ |nm| focus pos. $|\mu m|$ $\sigma |\mu m|$ 6.9 7005.60.216.6 800 19.20.2090043.8 5.80.18100084.7 4.50.14

lambda of 700 nm results can be adopted for shorter lambda

Sufficiently small charge spread (HSC pixel scale is 15 % smaller)

Suprime-Cam

Measurement is consistent with expected value.

Mounted on Subaru Replacement of MIT/LL CCID-20

Mounted on Subaru

Image size at Subaru

B band

z' band

0.48" FWHM

0.38" FWHM

Cosmetic defects

New Suprime-Cam case (10 CCDs): One block of

No defect

bright columns

Block width: 6 CCD: 2 column 1 CCD: 5 column

3 CCD

Delayed charge emission from surface traps Pinning clock sequence between exposures fixes this entirely.

CCD Performance

Items		Requirement $(-100^{\circ}C)$	Measured
Packaging	Format (pixel size)	$2048 \times 4096 \ (15 \ \mu m \Box)$	-
	Pixel to Package edge	$< 0.5 \mathrm{~mm}$	$0.410{\pm}0.025$
	(Serial register side)	< 5.0 mm	$4.975 {\pm} 0.025$
	Global height variation	$<25~\mu{\rm m}$ Peak-to-Valley	
QE	400 nm	> 45	42
	550 nm	> 85	87
	650 nm	> 90	94
	770 nm	> 85	91
	920 nm	> 80	78
	1000 nm	> 40	40
CTE (per pix)	Parallel direction	> 0.999995 (1600 e)	0.999999
	Serial direction	> 0.999995 (1600 e)	0.999998
Dark Current		< a few e/hour/pix	1.4
Charge diffusion		$\sigma_D < 7.5 \ \mu m \ (400 < \lambda < 1050 \ nm)$	7.5
Full well	1 % departure	> 150,000 e	180,000
Amp. Responsivity		$> 4 \ \mu V/e$	4.5
Readout noise	150 kHz readout	< 5 e	4.5

Wider Field of View

Hyper Suprime-Cam

HSC Developments

- Larger Focal Plane 1.5 deg diameter
 - More CCDs
 HAMAMATSU
 - Large Filters
- <u>New Wide Field Corrector</u>
- <u>New Prime Focus Unit</u>

Canon MITSUBISHI

- Optics alignment system
- mechanical interface to the telescope

HSC Components

HS

310 cm high

HSC Focal Plane

43

CCD Dewar Cooler

- Development Status
 - Production model prototype is just assembled, now in test
 - Cooling power and vibration : to be measured
 - Delivered to NAOJ by the end of March

Pulse tube cooler just assembled in Fuji Electric

CCD Dewar Front End Electronics

- FEE Assembly
 - Interval of FEE boards: 17mm
 - FPC cables from CCDs are folded and placed between FEE boards

HSC Cryostat

Dewar Vacuum test

FEE: Signal processing circuit

- Double-slope type CDS circuit based on SDSS photometric camera
- 3 op-amps signal processor to achieve low power consumption
 - Pre-amp
 - Inverting amp
 - Integration amp
- AC coupling with DC level restoration
- Low power and fast op-amps with quick overload recovery (No need of clamp diode)
- 0.05% linearity error over the full signal range
- -150ppm/C of the gain temperature dependency

Figure 1.4: Pre-amplifire and CDS circuit

OPA 627

FEE: Connection diagram

- Frontend for a Half of Science CCD (56 CCD)
 - 4CCD FE board x9
 - 6CCD FE board x3
 - 4CCD FE board x1 (Used only 2CCD)
- Hermetic Connector (MIL circular type)
 - 55 pins x2 for CCD Clock
 - 41 pins x4 for ADC Data
 - 26 pins x3 for Power
 - Total 9 hermetic connectors

BEE: Connection diagram

- Frontend for a Half of Science CCD (56 CCD)
 - 1GbE Interface Board x1
 - Power Management x2
 - FE Interface x2
 - FE DAQ x2
 - Total 7 boards
- One pair of Optical Fiber going out from the Prime Focus
- Two sets of BEE for the science CCD is connected to synchronize the CCD clock.

Connections of Backend Electronics

BEE: Prototyping

Designed by U-tokyo and KEK Uchida et al. 2008 SPIE

120 CCDs will be delivered by 2010/8

Wide Field Corrector

Details of Design

WFC

Procurement completed

Polishing at Canon

Polishing underway 2010/3E Completion incl. coating

Lens Barrel Pile of Lens Ring Frames

Each Lens Element is retained by each lens frame.

The lens frames are stacked and formed the lens barrel assembly.

Lens Frame Material

Feature

Low CTE (< |0.1| ppm) High Young's modulus (~ 140 Gpa) mass density ~ 2.7 kg/m^3 58

Lens Barrel from Kyocera

Machined[•]

Sintered

2009/11 completion 18 parts

Shutter 600 mm phi

Filter

Prototyping

- Optics coating Japan
- Asahi Spectra
- Barr

They all look promising.

Asahi Spectra

New sputtering coating facility is being built.

Summary

No fatal technical risk remains Budget crisis being settled by stimulus money 2011/E First Light ₆₅

Thank you