Extreme faint flux imaging with an EMCCD

Olivier Daigle Université de Montréal Laboratoire d'Astrophysique Expérimentale

Detectors for Astronomy 2009 Garching, October 14th 2009

de Montr

Universit

EMCCD challenges

 In order to get rid of the excess noise factor, the Photon Counting (single threshold, PC) operation of the EMCCD is mandatory

- * PC operation implies moderate to high frame rate
- At high frame rate, Clock Induced Charges (CIC) are the dominant source of noise
- CIC must be tamed down to allow efficient PC operation
- * We want inverted mode operation

EMCCD challenges

 In PC, a high G/σ ratio is mandatory to allow a high proportion of the events to come out of the read-out noise

The CCCP Controller

The CCD Controller for Counting Photons was built to test ways to reduce the CIC. It comprises : ✤ 13 arbitrary clocks: BYOW* * 12 bits DAC, 10 ns resolution on every clock ✤ 1 resonant HV clock (14 bits DAC for amplitude) 1 ns switching precision * Biases, 16 bits ADC (w/ CDS), Communication interface

The CCCP Controller

The CCD Controller for Counting Photons was built to test ways to reduce the CIC. It comprises : ✤ 13 arbitrary clocks: BYOW* * 12 bits DAC, 10 ns resolution on every clock ✤ 1 resonant HV clock (14 bits DAC for amplitude) I ns switching precision * Biases, 16 bits ADC (w/ CDS), Communication interface *Build Your Own Waveforms

BYOW - Horizontal

* Scope traces: 20ns - 5V / div

Rφ1 115 pFRφ2 65 pFRφ3 125 pF

BYOW - Horizontal

RΦ1 115 pFRΦ2 65 pFRΦ3 125 pF

Results

Camera built with CCCP w/ Grade 1 CCD97 LN₂ cooled

Effect on vertical CIC

Effect on vertical CIC

 Some regions of the image are nearly free of vertical CIC

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045

Effect on vertical CIC Vertical crunch of dark images 0.006 High SNR dark 0.005 image 0.004 Mean signal * Some regions of the image are nearly free 0.003 of vertical CIC 0.002 0.001 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045

Effect on vertical CIC

Vertical crunch of dark images

High SNR dark image

 Some regions of the image are nearly free of vertical CIC

← Horizontal CIC floor

PC CIC+dark ≠ AM CIC+dark

Scientific results

CCCP w/ Grade 1 CCD97
OMM Telescope: 1.6-meter, f/2
Integral field spectroscopy
Narrow band, fast photometry

Monochromatic $H\alpha$ intensity maps

Monochromatic H α intensity maps

Sum of ~2 hours at 10 fps - Preliminary results

Temporal bins of 10 minutes - Preliminary results

Hα narrow band imaging (30Å)

Comparison with low noise CCD

* CCD, $\sigma=2\bar{e}$ ✤ 10 minutes / image ✤ Dark 0.001 ē/pix/s * CCD97 w/ CCCP * 0.1s / image ✤ Dark 0.001 ē/pix/s ✤ CIC 0.0023 event/ pix/im

Conclusions

- * CCCP achieves low CIC levels and high G/σ ratio, even in inverted mode
 - Makes PC operation efficient with an EMCCD
 - Also improves horizontal CTE (not covered)
 - * Dark noise limited for $t_{exp} > 5s$
- CIC generated in the horizontal register dominates
 - * Tested at 10MHz, can operate faster

Conclusions

EMCCD noise is still CIC dominated

- Changes to the design and to the manufacturing processes could lower the CIC impact
- Should be explored for larger format EMCCDs

Thanks for your attention

10 014

odaigle@astro.umontreal.ca

