Detectors that cover a dynamic range of more than 1 million ...in several dimensions

Detectors for Astronomy Workshop Garching, Germany 10 October 2009

James W. Beletic

Teledyne

Providing the best images of the Universe

The Ideal Imaging Sensor

The ideal sensor:

- detects every photon (100% QE)
- provides photon noise limited performance

No single sensor is ideal for every application.

Incident signal

Background

Temperature

Environment

Vibration

Radiation

• Flux

Wavelength (λ)

- **Operating mode**
- Integration time
 - Frame readout time
 - Shutter (rolling, snapshot)
 - Multiple storage cells per pixel
 - Windows
 - Reset (pixel, line, global)
 - Event driven

Interface

- Input (analog, digital)
- Output (analog, digital)
- # of readout ports
- Mechanical
 - e.g. order sorting filter

H2RG

Other Requirements

- Linearity
- Anti-blooming
- Minimal persistence

Huge Dynamic Range to be Covered (2 of 3)

Huge Dynamic Range to be Covered (3 of 3)

Hybrid CMOS Imaging Sensors

Readout Circuit

Input signal

• Flux – object and background

Operating Mode

- Integration time
- Frame readout time
- Shutter (rolling, snapshot)
- Multiple storage cells per pixel
- Windows
- Reset (pixel, line, global)
- Event driven

Interface

- Input (analog, digital)
- Output (analog, digital)
- # of readout ports

Environment

- Temperature
- Radiation

Other Requirements

- Linearity
- Anti-blooming

Hybrid CMOS Imaging Sensors

The functionality of a Readout Integrated Circuit (ROIC) is only limited by:

- the design rule of the CMOS process
- the size of the pixel
- your imagination

CMOS Pixel Amplifier Types

Low light level, long exposure astronomy

- H1, H2, H1R
- HxRG: H1RG, H2RG, H4RG-10, H4RG-15

Planetary Missions, Earth Science

- 6604a
- Next generation hyperspectral
- Thermal IR pushbroom sensor

Solar Astronomy

• High speed, low noise, large format polarization sensors

High Speed, low noise & photon counting

- Speedster128, Speedster256D
- Event driven x-ray detectors
- Avalanche photodiodes

Low light level, long exposure astronomy

- H1, H2, H1R
- HxRG: H1RG, H2RG, H4RG-10, H4RG-15

HAWAII-2RG 2048×2048 pixels

HAWAII-2RG (H2RG)

- 2048×2048 pixels, 18 micron pitch
- 1, 4, 32 ports
- "R" = reference pixels (4 rows/cols at edge)
- "G" = guide window
- Low power: <1 mW (4 port, 100 kHz rate)
- Detector material: HgCdTe or Si
- Interfaces directly to the SIDECAR ASIC
- Qualified to NASA TRL-6
 - Vibration, radiation, thermal cycling
 - Radiation hard to ~100 krad

Teledyne Imaging Sensors			500 2007	5.4µm	
	2048				
Visible & Infrared Focal Plane Array			8		
			die 1, 4, 32		
be 2048x204	2.5				
ntegrated cir-	274				
space telescope applications.				Removed	
				· · · · ·	
 Large (2045×) 	2048 pixel) array with 18 µm pixel pitch.		2.65	\$3-55	
 Compatible HgCdTe infta detectors, pro soft X-ray to 1 	with Teledyne imaging Sensors (TIS) red (IR) and silicon PtN HyVISI [™] visible iniding sensing of any spectral band from .5 µm.		70		
 Substrate-rem enables resp down to 40 cosmic radiat 	roved HgCdTe enhances the J-band QE, onse into the visible spectrum (70% QE 0mm) and eliminatos fluorescence from on absorbed in the substrate.		90		
Reference ro rejection.	es and columns for common-mode noise	*246	iot .	#0.05	
· Guide windor	w output - windowing with simultaneous		of in 155	a 18 Invalia 1	
window which for guiding	may be read out at up to 5 MHz pixel rate Readout is designed to allow interferend	A CONTRACTOR	.000		
readout of the	guide window and the full frame science		2		
- Selectable o	mber of outputs (1 d or 37) and upor		20	x 08	
selectable sc data acquisiti	an directions provide complete flexibility in th.	1. 1. 1 M	of army		
· Built with mor	tularity in mind - the array is 4-side-buttable	Provention of HIRDs	50		
to allow assembly of large mosaics of 2048+2048 H2RG modules, such as TIS' 4098+4098 mosaic FPA and larger mosaics.		ATTAN	25		
Fully compatible with the TIS SIDECAR™ ASIC Focal Plane Electronics.		of by the user with respect to the system of			
		man and	to the Carll No.		

12

Large Format Hybrid Arrays

Planetary Missions, Earth Science

- 6604a
- Next generation hyperspectral
- Thermal IR pushbroom sensor

Moon Mineralogy Mapper **Discovers Water on the Moon**

Moon water findings are a game-changer

Discovery calls into question 40 years of assumptions about lunar surface

Instrument at JPL before shipment to India

Sensor Chip Assembly

Teledyne Infrared FPA

- 640 x 480 pixels (27 µm pitch)
- Substrate-removed HgCdTe (0.4 to 3.0 µm)
- 650,000 e- full well, <100 e- noise
- 100 Hz frame rate (integrate while read)
- < 70 mW power dissipation
- · Package includes order sorting filter
- · Total FPA mass: 58 grams

Chandrayaan-1 in the Polar Satellite Launch Vehicle

Launch from Satish

261 Band Spectrun 70 m/pixel @ 100 kr

Moon Mineralogy Mapper resolves visible and infrared to 10 nm spectral resolution, 70 m spatial resolution 100 km altitude lunar orbit

Completion of Chandrayaan-1 spacecraft integration Moon Mineralogy Mapper is white square at end of arrow

Dhawan Space Centre

By Andrea Thompson SPACE

updated 12:38 p.m. PT, Thurs., Sept . 24, 2009

The discovery of widespread but small amounts water on the surface of the moon, announced Wednesday, stands as one of the most surprising findings in planetary science.

Next Generation Hyperspectral array

Parameter	Unit	6604A	Next Gen Hyperspectral
Pixel pitch	microns	27	30
Spatial pixels	columns	640	640, 1280 or 1500
Spectral pixels	rows	480	480
Well capacity	electrons	650,000	1,000,000
Readout noise	electrons	120	100
Integration time	msec	10	4
Readout mode		Integrate while read	Integrate while read
Windowing		Yes	Yes
Power dissipation	mW		< 150
Frame rate			250
Input		Analog	Digital
Output		Analog – 4 ports	Analog – 1 port per 160 columns

Solar Astronomy

• High speed, low noise, large format polarization sensors

Ground-based Solar Astronomy

- 1. To understand the Sun, need to understand magnetic field
- 2. Measure magnetic field by measuring polarization
- Measure 4 or 8 polarization states at ~2 kHz rate
 - Individual measurements at ~10 kHz

...and of course, want large arrays of pixels

Advanced Technology Solar Telescope (ATST) European Solar Telescope (EST)

Ground-based Solar Astronomy

3 types of sensors required.

The new type of polarization sensor is:

- 2048×2048 pixels
- 20 to 24 µm pixel pitch
- Record 4 (8) polarization states at 2.5 kHz, switching between charge caching sites at 10 (20) kHz
- Read out the summed charge at 100 Hz frame rate

Teledyne has made a sensor that takes three successive 280 nsec exposures, using charge caching approach similar to what is shown in schematic at left.

Welding machine

Won R&D 100 award

High Speed, low noise & photon counting

- Speedster128, Speedster256D
- Event driven x-ray detectors
- Avalanche photodiodes

Speedster

Speedster128 designed in 2005 to be next generation high speed, low noise IR array

- 128 x 128 pixels
- 40 µm pixel pitch
- Digital input clocks and biases generated on-chip
- Analog output
- Two gain settings high gain for lowest noise
- Chip functionality and performance (in low gain) proven
- High gain mode (which should be lowest noise) does not work as designed

Speedster256-D (2008 design) took Speedster128 design

- Improved CTIA pixel
- 256 x 256 pixels
- 12 bit analog-to-digital converters on-board
- Up to 10 kHz frame rate

Event Driven X-ray sensor

Large format x-ray sensors detect a small number of xrays per frame

X-rays produce hundreds to thousands of electron-hole pairs per absorbed x-ray

Event driven readout being developed to:

- Only read out pixels where x-rays detected
- Single event readout provides x-ray energy measurement
- High time resolution

HgCdTe Avalanche Photodiodes (APDs)

Teledyne has commenced development of HgCdTe APDs

- Electron avalanche 5 μ m λ_{co}
- Hole avalanche 1.7 $\mu m \; \lambda_{co}$

- Proven high quality HgCdTe molecular beam epitaxy (MBE) may be crucial to successful development.
- Readout circuits to be optimized from existing intellectual property (IP).

