Scientific Imaging Sensors

A Short Course presented at the "Detectors for Astronomy" workshop Garching, Germany

12 October 2009

James W. Beletic and Markus Loose

2009 Nobel Prize in Physics awarded to the inventors of the CCD

In 1969, Willard S. Boyle and George E. Smith invented the first successful **imaging technology using a digital sensor, a CCD (charge-coupled device). The two researchers came up with the idea in just an hour of brainstorming.**

Bell Labs researchers Willard Boyle (left) and George Smith (right) with the charge-coupled device.

Photo taken in 1974. Photo credit: Alcatel-Lucent/Bell Labs.

The Nobel Prize in Physics 2009

"for the invention of an imaging semiconductor circuit - the CCD sensor"

Willard S. Boyle George E. Smith

Credits and sincere thanksto all contributing parties

Presentations from the workshop entitled "Scientific Detectors for Astronomy 2005"

- •CCDs: Barry Burke, Paul Jorden, Paul Vu
- •CMOS: Markus Loose, Alan Hoffman, Vyshnavi Suntharalingham
- •Pan-STARRS: John Tonry

For reference, see workshop proceedings: *Scientific Detectors for Astronomy 2005*, Jenna E. Beletic, James W. Beletic and Paola Amico (editors), Springer, (2006).

Other sources

•Slide set used in presentations at the NATO Advanced Studies Institute – Corsica (2002)

> For reference, see: "Optical and infrared detectors for astronomy: basic principles to stateof-the-art", James W. Beletic, chapter in book from the NATO Summer School: *Optics in Astrophysics*, Renaud Foy (editor), NATO Sciences Series II, Springer (2004).

- •James Janesick CCD Course Notes
- • "Substrate Removed HgCdTe-Based Focal Plane Arrays for Short Wavelength Infrared Astronomy", by Eric Piquette et al (2007)
- \bullet Wikipedia and other Internet sites
- \bullet Individual slides as identified in the presentation

Disclaimer

• All information presented in this slide set is accurate according to the best knowledge of the authors (James Beletic and Markus Loose). Any errors in content or presentation are solely due to the authors, and not the persons listed above.

Beletic and Loose – Scientific Imaging Sensors – Oct 2009

Organization specific information denoted by text in blue box at bottom of slide

Optical and Infrared Astronomy (0.3 to 25 m)

Two basic parts

Telescope to collect and focus light **Instrument** to measure light

Optical and Infrared Astronomy (0.3 to 25 m)

Instrument goal is to measure a 3-D data cube

But most detectors are 2-dimensional !

- \bullet Detectors are **BLACK & WHIT WHITE**
- •Can not measure color
- •Only measure intensity
- Optics of the instrument are used to map a portion of the 3-D data cube onto the 2-D detector

SOURCE

L.S.S.

Extended Continuum SPECTROGRAPHIC **MODES**

T x

~2′.5

 Ω' 5

With appropriate apologies to Foveon and 3rd Gen IR $\frac{1}{2}$

The Electromagnetic Spectrum

Orion – In visible and infrared light

Temperature and Light

Atmospheric transmission

Not all of the light gets through atmosphere to ground-based telescopes

Wavelength (microns)

Spectral Bands

Defined by atmospheric transmission & detector material properties

OH airglow (1.0-1.9 m)

- •OH provides a constant source of illumination in the near infrared
- \bullet OH created by the reaction: $H + O_3 \rightarrow OH + O_2$
- •Thin emitting layer at ~85 km altitude
- •Daytime intensity is 3x nighttime intensity, and intensity drops 40% during the night

OH airglow (1.0-1.9 m)

Energy of a photon

h = Planck constant $(6.6310^{-34}$ Joule•sec)

 $\mathsf E$ = h $\mathsf v$

 rs !

 $\rm v$ = frequency of light (cycles/sec) = $\rm \lambda/c$

- \bullet Energy of photons is measured in electron-volts (eV)
- \bullet eV = energy that an electron gets when it "falls" through a 1 volt potential difference.

JWST - James Webb Space Telescope

15 Teledyne 2K×2K infrared arrays on board (~63 million pixels)

Beletic and Loose – Scientific Imaging Sensors – Oct 2009 15 and the Lind of Multiple Sensors of the Multiple S

An electron-volt An electron-volt (eV) (eV) is extremely small is extremely small

 $1 \text{ eV} = 1.6 \cdot 10^{-19} \text{ J}$ (J = joule)

 $1 J = N \cdot m = kg \cdot m \cdot sec^{-2} \cdot m$

1 kg raised 1 meter = $9.8 \text{ J} = 6.1 \cdot 10^{19} \text{ eV}$

- The energy of a photon is **VERY** small The energy of a photon is **VERY** small
	- $-$ Energy of SWIR (2.5 μ m) photon is 0.5 eV
- In 5 years, JWST will take ~1 million images In 5 years, JWST will take ~1 million images
	- 1000 sec exp., 15 H2RGs, 90% duty cycle 1000 sec exp., 15 H2RGs, 90% duty cycle
	- Photons / H2RG image [≈] 3.6 × 1010 photons Photons / H2RG image [≈] 3.6 × 1010 photons
		- 5% pixels at 85% full well 5% pixels at 85% full well •
		- 10% " at 40% full well 10% " at 40% full well •

••

- 10% " at 10% full well 10% " at 10% full well
- 85,000 e-

Full well

- 75% " at 1% full well 75% " at 1% full well $-$ Total # SWIR photons detected ≈ 3.6 × 10¹⁶
- $-$ Total energy detected ≈ 1.8 × 10¹⁶ eV
- $\bullet~$ Drop peanut M&M® candy (~2g) from height of 15 cm (~6 inches) height of 15 cm (~6 inches)
	- Potential energy [≈] 1.8 x 10¹⁶ eV Potential energy [≈] 1.8 x 10¹⁶ eV

15 cm peanut M&M® drop is 15 cm peanut M&M® drop is equal to the energy detected equal to the energy detected during 5 year operation of the during 5 year operation of the James Webb Space Telescope! James Webb Space Telescope!

The Ideal Detector

- Detect 100% of photons
- Each photon detected as a delta function
- Large number of pixels
- Time tag for each photon
- Measure photon wavelength
- Measure photon polarization
- \checkmark Up to 98% quantum efficiency
- \checkmark One electron for each photon
- $\sqrt{$ ~1,400 million pixels (>10⁹)
- **E** No framing detectors \checkmark APDs & event driven readout
- **E** No defined by filter Foveon, 3rd Gen IR
- **E** No defined by filter Can place filter on detector

Plus READOUT NOISE and other "features"

6 steps of optical / IR photon detection

6 steps of optical / IR photon detection

Single layer anti-reflection coatings (angle of incidence = 0°)

Ideal CCD anti-reflection coating

Actual CCD anti-reflection coating

Quarter wave Hf0₂ at 560 nm is 0.25(560)/2 = 70 nm

Quarter wave Hf0 $_2$ at 560 nm is 0.25(560)/2 = 70 nm (700 Å)

Beletic and Loose – Scientific Imaging Sensors – Oct 2009

Mike Lesser, U. Arizona

Example Anti-reflection coating for HgCdTe

6 steps of optical / IR photon detection

Crystals are excellent detectors of light

•

Structure of An Atom

- Simple model of atom
	- – Protons (+) and neutrons in the nucleus with electrons orbiting

Silicon crystal lattice

- • Electrons are trapped in the crystal lattice
	- by electric field of protons
- • Light energy can free an electron from the grip of the protons, allowing the electron to roam about the crystal
	- creates an "electron-hole" pair.
- \bullet The photocharge can be collected and amplified, so that light is detected
- $\mathop{\textstyle\mathrm{C}}$ The light energy required to free an electron depends on the material.

Charge Generation

Silicon CCD

Similar physics for IR materials

Photon Detection

For an electron to be excited from the conduction band to the valence band

$$
hv > \mathcal{E}_{g}
$$

Conduction Band Valence Band \mathcal{E}_{g}

$$
\lambda_c = 1.238 / \mathcal{E}_g (eV)
$$

 $h =$ Planck constant (6.6310-34 Joule•sec) v = frequency of light (cycles/sec) = λ /c ε _s = energy gap of material (electron-volts)

*Lattice matched InGaAs ($In_{0.53}Ga_{0.47}As$)

Tunable Wavelength: Valuable property of HgCdTe

 $Hg_{1-x}Cd_xTe$ Modify ratio of Mercury and Cadmium to "tune" the bandgap energy

Bandgap and Cutoff Wavelength as function of Cadmium Fraction (x)

Absorption Depth

The depth of detector material that absorbs 63.2% of the radiation 1/e of the energy is absorbed absorption depth (s) 63.2% of light absorbed 2 86.5%3 95.0%

For high QE, thickness of detector material should be ≥ 3 absorption depths

4 98.2%

Silicon is an indirect bandgap material and is a poor absorber of light as the photon energy approaches the bandgap energy. For an indirect bandgap material, both the laws of conservation of energy and momentum must be observed. To excite an electron from the valence band to the conduction band, silicon must simultaneously absorb a photon and a phonon that compensates for the missing momentum vector.

- \bullet For high QE in the near infrared, need very thick (up to 300 microns) silicon detector layer.
- • For high QE in the ultraviolet, need to be able to capture photocharge created within 10 nm of the surface where light enters the detector.
- \bullet In addition, the index of refraction of silicon varies over wavelength – a challenge for antireflection coatings.
UV / Blue CCD Quantum Efficiency

- \bullet Need very thin backside passivation layer
- \bullet **Technologies**
	- $\mathcal{L}_{\mathcal{A}}$ Boron implant and laser anneal
		- E2V, MIT/LL
	- MBE
		- JPL, MIT/LL
	- Chemisorption coating that produces positive charge
		- University of Arizona (Lesser) Licensed by Fairchild

Effect of anneal process on QE

Quantum Efficiency of AR-coated MBE Devices

Beletic and Loose – Scientific Imaging Sensors – Oct 2009 39

NIR Silicon CCD Quantum Efficiency

- \bullet Optical absorption depth
	- $\mathcal{L}_{\rm{max}}$ 800 nm 11 µm
	- 900 nm 29 μm
	- 1000 nm 94 μm
- \bullet N-channel CCD (collect electrons)
	- $-$ Standard CCDs 10-15 μ m thick
	- $-$ Thick high-resistivity 40-50 μ m thick
		- •MIT/LL, e2v
- \bullet P-channel CCD (collect holes)
	- $\,$ Very thick 200-300 $\rm \mu m$ thick
		- LBNL

Near-IR Imaging enabled by very thick silicon sensors

Planetary Nebula NGC 6853 (M 27) - VLT UT1+FORS1

ESO PR Photo 38a/98 (7 October 1998)

C ESO European Southern Observatory

Lawrence Berkeley National Laboratory

腎
0

A very thick silicon detector is also a very good sensor of cosmic rays

Our 300- μ m thick depleted CCD gives us the great advantage (curse?) that we can see the events in new detail

Lawrence Berkeley National Laboratory

Hybrid Silicon PIN Quantum Efficiency achieves as high QE as CCDs in the NIR

-- HyViSI - thick detector layer (50V bias) - HyViSI - thinner detector layer (22V bias) Monolithic CMOS with microlens

 $T = 295K$

1000 1100 1200

Measured data

Beletic and Loose – Scientific Imaging Sensors – Oct 2009

Wavelength (nm)

Effective QE (%) - QE x Fill Factor

Teledyne Imaging Sensors

Absorption Depth of HgCdTe

Rule of Thumb

Thickness of HgCdTe layer needs to be about equal to the cutoff wavelength

Two methods for growing HgCdTe

- 1. Liquid Phase Epitaxy (LPE)
- 2. Molecular Beam Epitaxy (MBE)
	- Enables very accurate deposition \Rightarrow "bandgap engineering"
	- Teledyne has 4 MBE machines for detector growth

RIBER 3-in MBE Systems

More than 7500 MCT wafers grown to date

3 inch diameter platen allows growth on one 6x6 cm substrate

Beletic and Loose – Scientific Imaging Sensors – Oct 2009

RIBER 10-in MBE 49 System RIBER 10-in MBE 49 System

10 inch diameter platen allows simultaneous growth on four 6x6 cm substrates

Teledyne Imaging Sensors

Quantum Yield: One photoelectron for every detected photon

…for most wavelengths of interest to ground-based astronomy

Silicon

For wavelengths that are 30% to 100% of the cutoff wavelength, there will a single electron-hole pair created for every detected photon.

For shorter wavelengths (higher energies), there is an increasing probability of producing multiple electron-hole pairs.

For silicon, this effect commences at $~1$ $~30\%$ of the cutoff wavelength $(\lambda < 330$ nm).

Data from Barry Burke, MIT Lincoln Laboratory

HgCdTe

- • Limited data from HgCdTe detectors shows that quantum yield is not significant at 800 nm for a 5400 nm cutoff detector (11% of cutoff wavelength).
- •The quantum yield of HgCdTe is still being investigated.

Dark Current Undesirable byproduct of light detecting materials

- The vibration of particles (includes crystal lattice phonons, electrons and holes) has energies described by the Maxwell-Boltzmann distribution. Above absolute zero, some vibration energies may be larger than the bandgap energy, and will cause electron transitions from valence to conduction band.
- • Need to cool detectors to limit the flow of electrons due to temperature, i.e. the **dark current** that exists in the absence of light.
- The smaller the bandgap, the colder the required temperature to limit dark current below other noise sources (e.g. readout noise)

Dark Current of Silicon-based Detectors

In silicon, dark current usually dominated by surface defects

Dark Current of HgCdTe Detectors

6 steps of optical / IR photon detection

Two main parts of an imaging detector Detector material & Solid state electronics

- \bullet Intensity image is generated by collecting photocharge generated in 3-D volume into 2-D array of pixels.
- \bullet Optical and IR focal plane arrays both collect charges via electric fields.
- \bullet In the z-direction, optical and IR use a p-n junction to "sweep" charge toward pixel collection nodes.

Periodic Table

Periodic Table

Periodic Table

Photovoltaic Detector Potential Well

Silicon, HgCdTe and InSb are photovoltaic detectors. All use a pn-junction to generate E-field in the z-direction of each pixel. This electric field separates the electron-hole pairs generated by a photon.

Beletic and Loose – Scientific Imaging Sensors – Oct 2009

Charge Collection

- \bullet CCD and CMOS focal plane arrays are different for charge collection in the x and y dimensions.
- • CMOS – collect charge at each pixel and have amplifiers and readout multiplexer
- \bullet CCD – collect charge in array of pixels. At end of frame, move charge to edge of array where one (or more) amplifier (s) read out the pixels.

HgCdTe IR FPA Manufacturing Process

Substrate Removal of HgCdTe

The new standard in astronomy

5

5) (6

Substrate Removal Process

Cleared for Public Released by the Office of Security Beletic and Loose – Scientific Imaging Sensors – Oct 2009 Review of the Department of Defense (08-S-0170)

Packaging

Teledyne Imaging Sensors

QE Improvement With Substrate Removal

Quantum efficiency improves across the IR band after substrate removal, particularly at short wavelengths, and HgCdTe is sensitive to visible light.

Teledyne Imaging Sensors

FPA QE measured by NASA Goddard Detector Characterization Laboratory (no IPCC)

Cleared for Public Released by the Office of Security
Review of the Department of Defense (08-S-0170)

Beletic and Loose – Scientific Imaging Sensors – Oct 2009

Cosmic Rays and Substrate Removal

• Cosmic ray events produce clouds of detected signal due to particle-induced flashes of infrared light in the CdZnTe substrate; removal of the substrate eliminates the effect

2.5um cutoff, substrate on 1.7um cutoff, substrate on 1.7um cutoff, substrate off

*Roger Smith (Caltech) SPIE 5-25-2006

Beletic and Loose – Scientific Imaging Sensors – Oct 2009

Cleared for Public Released by the Office of Security
Review of the Department of Defense (08-S-0170)

Teledyne Imaging Sensors

Moon Mineralogy Mapper Discovers Water on the Moon

Moon water findings are a game-changer

Discovery calls into question 40 years of assumptions about lunar surface

By Andrea Thompson
SPACE

updated 12:38 p.m. PT, Thurs., Sept. 24, 2009 The discovery of widespread but small amounts water on the surface of the moon, announced Wednesday, stands as one of the most surprising findings in planetary science.

Instrument at JPL beforeshipment to India

Focal Plane Assembly

Teledyne Infrared FPA

- \cdot 640 x 480 pixels (27 µm pitch)
- Substrate-removed HgCdTe (0.4 to 3.0 µm)
- 650,000 e- full well, <100 e- noise
- 100 Hz frame rate (integrate while read)
- \cdot < 70 mW power dissipation
- Package includes order sorting filter
- · Total FPA mass: 58 grams

261 Band Spectrun

70 m/pixel @ 100 kn

Moon Mineralogy Mapper resolves visible and infrared to 10 nm spectral resolution, 70 m spatial resolution 100 km altitude lunar orbit

Completion of Chandrayaan-1 spacecraft integration Moon Mineralogy Mapper is white square at end of arrow

Hybrid CMOS Infrared Imaging Sensors Hybrid CMOS Infrared Imaging Sensors

Hybrid Imager Architecture

6 steps of optical / IR photon detection

MOSFET Principles

MOSFET = metal oxide semiconductor field effect transistor

Fluctuations in current flow produce "readout noise" Fluctuations in reset level on gate produces "reset noise"

IR multiplexer pixel architecture

Beletic and Loose – Scientific Imaging Sensors – Oct 2009 70

IR multiplexer pixel architecture

Source Follower Operation

If the drain current is constant, the gate-source voltage (Vgs) is constant as long as the transistor operates in saturation:

=> If Vg moves, Vs will follow to keep Vgs constant

Capacitive Trans-Impedance Amplifier Operation

Inverting amplifier:

When the input increases, the drain current increases \Rightarrow The output node is pulled down by the transistor **When the input decreases, the drain current decreases => The output node is pulled up by the current source Capacitive feedback:**

negative feedback that counteracts the initial input voltage change

=> charge at the input is converted to a voltage at the output, the input voltage is held constant by the feedback.

Direct Injection Operation

- **DI transistor does not work as amplifier, works more like a passgate**
	- **Whenever the detector diode generates photo charges, its voltage decreases (due to built-in capacitance)**
	- **This will increase Vgs which in turn will allow an increased drain current through the transistor**
	- **This current moves the collected charges from the photodiode into the integration capacitor C**
	- **Removing charges from the detector increases its voltage again, causing the drain current to decrease**

General Architecture of CMOS-Based Image Sensors

Special Scanning Techniques Supported by CMOS

- \bullet **Different scanning methods are available to reduce the number of pixels being read:**
	- **Allows for higher frame rate or lower pixel rate (reduction in noise)**
	- **Can reduce power consumption due to reduced data**

Astronomy Application: Guiding

- \bullet **Special windowing can be used to perform full-field science integration in parallel with fast window reads.**
	- **Simultaneous guide operation and science data capture within the same detector.**
- **Two methods possible:**
	- **Interleaved reading of full-field and window**
		- •**No scanning restrictions or crosstalk issues**
		- •**Overhead reduces full-field frame rate**
	- **Parallel reading of full-field and window**
		- •**Requires additional output channel**
		- •**Parallel read may cause crosstalk or conflict**
		- •▸ No overhead ⇒ maintains maximum full-field **frame rate**

Electronic Shutter: Snapshot vs. Rolling Shutter

• **Snapshot Shutter**

- **All rows are integrating at the same time.**
- **Typically more transistors per pixel and higher noise.**

- **Rolling Shutter (Ripple Read)**
	- **Each row starts and stops integrating at a different time (progressively).**
	- **Typically less transistors per pixel and lower noise.**

CMOS-Based Detector Systems

• **Three possible CMOS Detector Electronics Configurations**

Single Chip

in sensor chip

– **All electronics integrated**

- **Discrete Electronics**
	- **Assembly of discrete chips and boards**
	- **Large, higher power**

Dual Chip

 All electronics integrated in a single companion chip

Monolithic CMOS

- **A monolithic CMOS image sensor combines the photodiode and the readout circuitry in one piece of silicon**
	- **Photodiode and transistors share the area => less than 100% fill factor**
	- **Small pixels and large arrays can be produced at low cost => consumer**

applications (digital cameras, cell phones, etc.)

Complete Imaging Systems-on-a-Chip

- • **Monolithic CMOS technology has enabled highly integrated, complete imaging systems-on-a-chip:**
	- **Single chip cameras for video and digital still photography**
	- **Performance has significantly improved over last decade and is better or comparable to CCDs for many applications.**
	- **Especially suited for high frame rate sensors (> Gigapixel/s) or other special features (windowing, high dynamic range, etc.)**
- • **However, monolithic CMOS is still limited with respect to quantum efficiency:**

2 Mpixel HDTV CMOS Sensor

- **Photodiode is relatively shallow => low red response**
- **Metal and dielectric layers on top of the diode absorb or reflect light => low overall QE**
- **Backside illumination possible, but requires modification of CMOS process**
- •**Microlenses increase fill factor:**

CMOS SCA Sampling Techniques

- •**Periodic sampling of detector signal possible during a long integration**
- \bullet **Two general methods of white noise reduction by multiple sampling**
	- **Fowler sampling: average 1st N samples and last N samples; then subtract**
	- **Sample up the ramp (SUTR): fit line (or polynomial) to all samples**

Example of Noise vs Number of Fowler Samples

Non-destructive readout enables reduction of noise from multiple samples

6 steps of optical / IR photon detection

CCD Architecture

Basic CCD Structure

Basic CCD Manufacturing Process

Final process: three phase, triple poly Final product (top view)

SEM cross section

CCD Timing

CCD – 3 Phase Serial Register

Beletic and Loose – Scientific Imaging Sensors – Oct 2009 91

Beletic and Loose – Scientific Imaging Sensors – Oct 2009 93

CCD Rain bucket analogy

CCD Charge transfer The good, the bad & the ugly

Beletic and Loose – Scientific Imaging Sensors – Oct 2009 98

CCD Charge transfer The good, the bad & the ugly

- \bullet "Bad & ugly" aspects of charge transfer
	- Takes time (limited max frame rate)
	- Can blur image if no shutter used
	- Can lose / blur charge during move (may limit astrometry accuracy)
	- Can bleed charge from saturated pixel up/down column
	- Can have a blocked column
	- Can have a hot pixel that releases charge into all passing pixels

CCD Charge transfer The good, the bad & the ugly

\bullet "Good" aspects of charge transfer

- Can bin charge "on-chip" noiseless process
- Can charge shift for tip/tilt correction or to eliminate systematic errors
	- "va-et-vient", "nod-and-shuffle"
- Can build special purpose designs that integrate different areas (curvature wavefront sensing, Shack-Hartmann laser guide star wavefront sensing)
- Can do drift scanning
- No indium bump issues that can cause inoperable pixels
- **Have space to build a great low noise amplifier !**

Frontside & Backside illuminated CCD

Frontside

Backside

Backside illuminated CCDs have high spectral response…if processed correctly.

Thin to 10-20 microns, and **backsurface treatment** to ensure that photons absorbed near the back surface are collected. Surface treatments include:

- Ion implantation followed by laser annealing
- •Ion implantation followed by furnace annealing
- •Chemisorption charging
- •Molecular beam epitaxy (MBE) / delta doping

Optical Absorption Depth in Silicon

(a.k.a. "The Beautiful Plot")

6 steps of optical / IR photon detection

Analog-to-digital converters

"Convert the analog signal (voltage or current) into a digital number"

- $\mathbf \bullet$ Quantization noise of an ADC is $(1/\sqrt{12})$ Least Significant Bit = 0.289 LSB
- Typically set gain of amplifier chain so that quantization noise is much less than readout noise. If readout noise is 4 electrons, set gain so that LSB equals \sim 2 electrons
- 16 bit ADC is most commonly used in astronomy. At ~2 electrons per ADU (analog to digital unit), or LSB, full well of a 16 bit ADC will be \sim 130,000 electrons; good match to the typical full well of a CCD or Short-Wave IR detector of 100,000 electrons.

Highly exaggerated quantization noise

Differential Non-Linearity (DNL)

- DNL describes the distance of an ADC code from its adjacent code.
- It is measured as a change in input voltage magnitude, and then converted to number of Least Significant Bits (LSBs).

$$
DNL = (V_{D+1} - V_D) / V_{LSB-ideal} - 1
$$

Integral Non-Linearity (INL)

- \bullet INL describes the deviation of the ADC transfer function from a straight line
- \bullet It can be computed as the integral of the DNL, and is expressed in LSB

DNL and INL Plots of a 12-bit ADC (from SIDECAR ASIC, at 7.5 MHz rate)

DNL and INL Plots of a 16-bit ADC (from SIDECAR ASIC, at 125 kHz rate)

Sample ADC Architectures

Successive Approximation Register (SAR)

Sample ADC Architectures *Pipeline ADC*

Cleared for Public Release (OSR Case 08-S-0319), but Unpublished. ITAR Restricted – 22 CFR 125.4(b)(13) Applicable

ADC Development Optimized for Applications

- \bullet Depending on resolution, sample rate and power consumption requirement, different architectures for ADCs are used.
- \bullet Pipeline ADCs used for video rate applications.
- Successive Approximation Register (SAR) ADCs are used for medium speed, higher resolution applications.
- \bullet Sigma-Delta ADCs are used for slow speed, very high resolution applications.

Beletic and Loose – Scientific Imaging Sensors – Oct 2009
22 CER 125 4(b)(13) Applicable
22 CER 125 4(b)(13) Applicable **Cleared for Public Release (OSR Case 08-S-0319), but Unpublished. ITAR Restricted – 22 CFR 125.4(b)(13) Applicable**

The SIDECAR ASIC Complete Electronics on a Chip

SIDECAR: System for Image Digitization, Enhancement, Control And Retrieval

Beletic and Loose – Scientific Imaging Sensors – Oct 2009

SIDECAR ASIC Functionality

Beletic and Loose – Scientific Imaging Sensors – Oct 2009

SIDECAR ASIC Floorplan

Beletic and Loose – Scientific Imaging Sensors – Oct 2009

SIDECAR ASIC Flight Package for JWST

- \bullet Ceramic board with ASIC die and decoupling caps
- \bullet Invar box with top and bottom lid
- Two 37-pin MDM connectors
	- FPE-to-ASIC connection
	- ASIC-to-SCA connection
- Qualified to NASA Technology Readiness Level 6 (TRL-6)
- 11 mW power when reading out of four ports in parallel, with 16 bit digitization at 100 kHz per port. FPE side

SIDECAR ASIC LGA Package

LGA

(old)

LGA

(new)

- Package for board level mounting: Package for board level mounting: – 337-pin LGA ceramic carrier – 337-pin LGA ceramic carrier
- Currently used for all ground-based Currently used for all ground-based applications applications
- Existing LGA package cannot be Existing LGA package cannot be hermetically sealed: not enough room to hermetically sealed: not enough room to attach the seal ring. attach the seal ring.
- Modified version is operating on the Hubble Modified version is operating on the Hubble Space Telescope: Space Telescope:
	- Uses "cavity-up" instead of "cavity-down" Uses "cavity-up" instead of "cavity-down"
	- Provides large seal ring for hermetic seal Provides large seal ring for hermetic seal
	- Pinout is exactly mirrored compared to Pinout is exactly mirrored compared to original LGA package original LGA package
	- Used by Hubble Space Telescope Advanced Used by Hubble Space Telescope Advanced Camera for Surveys (ACS) Repair (image in Camera for Surveys (ACS) Repair (image in background is from first light press release) background is from first light press release)

Teledyne Imaging Sensors

Beletic and Loose – Scientific Imaging Sensors – Scientific Imaging Sensors – Oct 2009 116 (1999 116) 116 (199

World's Largest Monolithic CCDs

CCD Mosaics

MegaCam on the CFHT - 378 million pixels

Pan-STARRS 1 1,397 million pixels

OmegaCam on the VST - 268 million pixels

Growth of CCD mosaics

Illustration of large focal plane sizes, from Luppino 'Moore's' law

Focal plane size doubles every 2.5 years

Infrared Mosaics

HgCdTe 2K x 2K, 18 µm pixels

HgCdTe 4K x 4K mosaic, 18 µm pixels

Beletic and Loose – Scientific Imaging Sensors – Oct 2009 120

Another 4096 x 4096 pixel IR mosaic comes on-line

July 2007 - First light of HAWK-I (High Acuity, Wide field K-band Imaging) European Southern Observatory 4096x4096 pixel mosaic of H2RGs 6th operational 4K×4K mosaic of H2 / H2RGs: ESO, Gemini, CFHT, UH, UKIRT, SOAR Two more 4K×4K mosaics to be commissioned in 2010: OCIW, MPIA

Serpens Star Forming Region 1 million year old stars

HAWK-I at Paranal SO Press Photo 36d/07 (22 August 2007)

Synoptic All-Sky InfraRed (SASIR) Telescope

Instituto Nacional de Astrofísica. Óptica y Electrónica

innoe

Beletic and Loose – Scientific Imaging Sensors – Oct 2009 123

Large IR Astronomy Focal Plane Development Large IR Astronomy Focal Plane Development The Next Step: 4096 The Next Step: 4096×4096 pixels 4096 pixels

- **4096×4096, 15 µm array**
- **Design readout circuit for high yield**
	- 4 ROICs per 8-inch wafer
- **4-side buttable for large mosaics**
- \bullet **Developed for the Extremely Large Telescopes**

Conventional vs. Orthogonal-Transfer CCDs

Orthogonal Transfer Array

Beletic and Loose – Scientific Imaging Sensors – Oct 2009

Pan-STARRS 1 on Haleakala (Maui) 1.4 Gigapixel array of orthogonal transfer CCDs

John Tonry & his masterpiece

First Gigapixel array installed in August 2007

Improved resolution from OTCCD Tip-Tilt Correction

Pan-STARRS4 on Mauna Kea

Beletic and Loose – Scientific Imaging Sensors – Oct 2009 ¹²⁸

Gemini North

CFHT

U. Hawaii 88-inch

UKIRT

Avalanche Process before Charge-to-Voltage Conversion

Geiger APD Sensor architecture

- **Four main parts**
	- 1) Photon detection
	- 2) Avalanche amplification (pulse generation)
	- 3) Pulse discrimination
	- 4) Photon counting and readout circuitry
- •**CMOS circuit used for (3) and (4)**
- • **For (1) and (2) - two options:**
	- a) Part of CMOS circuit
	- b) Put APD into detector material and hybridize to CMOS circuitry

*Linear mode operation of APD

In this mode, the total number of electrons collected in each pixel is a linear function of the number of detected photons.

- •However, the amplification process is statistical and there is "excess noise" in linear mode.
- • HgCdTe may be a special material with very little excess noise (few %) for avalanching under the appropriate conditions.
	- •Electron avalanche HgCdTe (e-APD) with ~5 micron cutoff material ($X \sim 0.33$)
	- •Hole avalanche HgCdTe (h APD) with \sim 1.7 micron cutoff material (X \sim 0.63)

e2v L3CCD – Serial Gain Register

Split frame transfer 8-output back-illuminated e2v L3Vision CCD.

6 steps of optical / IR photon detection

CCD / CMOS Comparison

CMOS = Complimentary Metal Oxide Semiconductor

Beletic and Loose – Scientific Imaging Sensors – Oct 2009 135

Comparison CMOS vs. CCD for Astronomy

- Silicon PIN hybrid detectors have become a serious alternative to CCDs providing a number of advantages, especially for space applications.
- \bullet **Backside illuminated monolithic CMOS** which combines the best of CMOS and CCD features will make major strides before the next detector workshop.

Thank you for your attention