Next Steps in Ground Based (Sub) Millimeter Wave Instrumentation

•Instrumentation for large single dish telescopes and its impact on ALMA

- Next Steps in Interferometry Instrumentatior
- Where can we rely on industry progress ?
- What do we need to develop by our own ?

Instrumentation for large single dish telescopes and impact on ALMA (I) Spectroscopy Receivers **Sensitivity**, Wideband, Multiband, Multibeam

-wideband : allow instantaneous spectral fingerprinting

-multiband : spectral fingerprinting and optimized calibration for multi transition analysis

-multibeam : high sensitivity large scale mapping, source finding, short spacing information for interferometry

Yebes 40m, GBT, LMT, CCAT,

Current ALMA receiver technology is the result of a very interactive community which has been built up through:

-Collaborations on ground based facilities

- -HERSCHEL HIFI and SOFIA
- -European FP6 program AMSTAR

Sideband separating (2SB) mixer B3 to B7

 $=$ > 2SB mixer = RF coupler + 2 DSB mixers + IF coupler

325 GHz 2SB mixer assembly

- RF frequency range: 275 373 GHz
- •• IF frequency range: $4-8$ GHz
- ALMA Band 7/PdBNG Band 4/EMIR Band 4

RF waveguide coupler

325 GHz DSB mixer

ALMA Band 7: RF noise

The next Steps

WB 100 GHz 2SB mixerD. Mai er et al 2008

- RF frequency range: 100 116 GHz
- IF frequency range: 4 12 GHz
- AMSTAR/EMIR Band 1

DSB mixer

IF noise

K.F. Schuster IRAM

Multiband dual polarization Operation

High performance dichroic mirrors are becoming available for room temperature operation.

QMC/Univ. Cardiff

Would be ver y helpful if this technology could be extended to cryogenic operation.

EMIR a new technology receiver at the IRAM 30m telescope (M. Carter e t al)

•Baseline mode: one band, Dual Pol •Dual mode s via dichroic plate (aka FSS):


```
\bulletB2 + B4 \qquad "
```
 \bullet B1 + B2 \qquad "

•Loss due to dichroic plate: <5%

Room Temperature Optics

B3 alone

K.F. Schuster IRAM

B4 alone

K.F. Schuster IRAM

B1 + B3 Cal Cold

K.F. Schuster IRAM

B1 + B3 Cal Amb

K.F. Schuster IRAM

EMIR had first light on Tuesday

Spectroscopic Multibeam Instruments

After very first attempts in the early 90's a second generation of multibeam instruments have successfully been commissioned around 2000:

BEARS 3mm at Nobeyama 45m (25 beams) **SEQUOIA** 3mm at FCRAO 14m (LMT) (32 beams) **CHAMP(+)** 0.7/0.45mm at CSO/APEX (16 beams) **HERA** 1.3mm at IRAM 30m (18 beams) **HARP** 0.8mm at JCMT (16 beams)

These instruments are largely based on assembled sin gle pixel technology.

SEQUOIA, CO in Taurus, P. Goldsmith et al 08

Leroy et al. 2008 IRAM 30m Telescope

Next generation of spectroscopic multibeam:

- $\bullet>=100$ Pixels
- deep mapping of CO isotopomeres, HCN, HCO+ in nb galaxies
- Complete mapping of galactic SF regions (within months)
- Need new and integrated technology
- Large number of pixels will be possible due to rapid progress in backend technology but simultaneous wideband will remain a dream.

The DSP Revolution for Spectroscopy Backends

Inp B W1.5 GHz 200KHz spacing

B. Klein

20 units deliverec do IRAM this week

Industrial Building blocks for Backends

Si or SiGe **Technology**

New Integrated Approaches:

•Integrated reflective cryogenic optics •Planar integration of couplers •Integration of cryogenic MMICs into SIS mixer blocks

ALMA Band 6 2SB mixer-preamplifier

A.R. Kerr et al., 2004

Multibeam for Interferometry:

 $(+)$

- •Theoretically very tempting in order to capitalize focal plane space.
- •We know how to build good small arrays
- •Allows for high resolution large scale mapping and Source finding.

 $(-)$

- •Requires huge IF transport and correlator power.
- •No possibility for derotation => Requires interferometric OTF ability.
- •No existing concept how to efficiently (phase) calibrate arrays.

Conclusions

•(S ub-)mm instrumentation is and will stay a very dynamic and rapidly evolving field.

• Upcoming single dish instrumentation will have a major impact on ALM A – astronomically and technicall y

•Sensitivity, bandwidth and frequency multiplexing upgra des will be available for interferometry within the next 5 years.

•Multibeam instrumentation for interferometry will need considerably more time and development effort and be restricted to one selected band. Unclear how to implement in the ALMA antennas/ receivers.

•Need to maintain expertise if such upgrades should be i mplemented some day at reasonable costs.

•Field will benefit from industrial semiconductor technology (samplers, correlator ASICS and FPGA technology) but direct steering possibilities or specification s will be ver y limited. Availability of specific GaAs/InP technology is very critical.

K.F. Schuster IRAM

- Large FOV Continuum Cameras: The technology race 1 (TES against KID)
- Spectroscopy: sensitivity (and stability), technology race 2, SIS against HEMT
- wideband, multiband, multibeam
- Electronics backends : sampler and DSP
- what we must know about semiconductor industry. GaAs/InP technology critical, might become worse in future. •Si/SiGe technology makes good progress but needs complete coverage for other industry applications. Detailed specs might not agree (samplers).