

ALMA Development

Andrew Blain Caltech 24th Mar 2009

ESO Garching

Contents

- ALMA will be 'transformational' and unprecedented
 - Order of magnitude improvement in sensitivity, resolution, image fidelity and cost
 - Probe the detailed astrophysics of the ISM in normal high-redshift galaxies
 - Reveal low-mass star formation anywhere in the Galaxy
 - Match HST, JWST resolution, natural match to deep AO observations
 - All ALMA partners have assigned support for developing the array
- How to develop
 - Those already in the RSM community: hard to see what we're going to need to learn
 - Those welcomed into RSM community: new ground, and tough to foresee too
 - Motivated by science requirements
- Special features of ALMA for development
 - Need a full suite of XXX: interferometer, existing arrays can test ideas
 - Receivers are already really good
 - Industrial process
- Immediate possibilities
 - Subarrays, solar optics, VLBI compatibility, phase correction tools
- Longer-term possibilities
 - New bands, multi-receiver operation, multi-beam feeds
- Efficiency gains
 - Software tools, weather forecasting, incremental Rx improvements, N_{antenna}

Resolved 'example': the Antennae

- Excellent example of distinct opt/UV and IR luminosity; BUT modest luminosity
- Interaction long known, but great IRAS luminosity unexpected
 - ~90% energy escapes at far-IR wavelengths
- Resolved images important
 - Relevant scales ~1" at high redshift

Dowell et al. 350µm

Spitzer IRAC mid-IR

HST WFPC2 Multiband optical

Current ALMA

- Descoped in 2005, review chaired by Roger Blandford
 - 3 primary science drivers
 - MW at z~3 in 24 hours (area)
 - velocity structure in protostar/disk at 150pc (baseline)
 - imaging quality 0.1% on 0.1" scale (configuration)
- Science requirements currently being reviewed within project
 - To announce milestones, test deliverables
- 50 antennas, bands 3-10; 3,6,7,9 initially, 5 partial.

Local example of best results

- IRAM PdB CO in NGC 6946 (Schinner et al. 2006)
- Spatial structure & gas dynamics
- ALMA can probe at z~3
 - Resolution
 - Primary beam
- Note synergy with eVLA/eMERLIN
 - Ultimately SKA

Red: CO; green: Ha; blue: continuum

CO(2-1) contours HST: Pa α & I band

Best performance now - distant

Genzel/Tacconi et al PdB

8'x8' field PdB HCO⁺(5-4) Garica-Burillo et al (2006)

- Only marginal spatial resolution possible
- Spectral bandwidth narrow
- Situation will improve dramatically with ALMA, a step in imaging quality tested at CARMA & IRAM

Development process

- ASAC, regional SACs, ad hoc working group
 - Charged by ALMA board to develop plan
 - Initial search for science drivers (hopefully complete)
 - Recent prioiritization
- Wide range of cost, timescale, interdependencies
 - Add more antennas?
 - Complete Band 5, add Band 1,2 & 11 (THz)
 - Revise correlator
 - Software tools, for efficient use & analysis

Ideas and priorities

Immediate possibilities

- Return to 6 (4 science) subarrays: comets/planets
- Solar sub-illumination optics
- VLBI compatibility: Galactic center imaging
- Atmospheric phase correction tools
- Longer-term possibilities
 - New bands: 5, then 1, 2 & 11: water, high-redshift galaxies, protostar power
 - multi-receiver operation: transients, solar system objects
 - Wider-bandwidth receivers, more high-resolution correlator output: high-z galaxies
 - multi-beam feeds, especially at high frequencies: mapping nearby galaxies
 - Require more powerful correlator to get most out of these developments
 - Longer baselines: masers, inner protostellar disks
- Efficiency gains: for all science areas
 - Software tools for analysis, archiving, correlator setup
 - Weather forecasting/operations planing
 - Incremental Rx improvements, during maintenance?
 - N_{antenna}

Next steps

- US decadal process / economic stimulus
 - This year
 - Also, French review process underway
- More ideas from community (&ELT community?)
- Timescale for developments is very flexible
 - Initial baseline ALMA is a great tool. Nevertheless it's not perfect
- Work to maintain skills & capability
- Spitzer archive. Herschel results. WISE results
- Your contribution. Via me / ASAC awb@astro.caltech.edu