

The SpARCS z > 1 Cluster Survey

Gillian Wilson UC Riverside

- Adam Muzzin (Yale)
- Howard Yee (Toronto)
- Ricardo Demarco (UC Riverside/Concepcion)
- Alessandro Rettura (UC Riverside)
- Shelly Bursick (UC Riverside)
- Joseph Cox (UC Riverside)
- Alireza Farahmandi (UC Riverside)
- Mark Lacy (NRAO)
- Jason Surace (Spitzer Science Center/IPAC)
- Michael Balogh (Waterloo)
- Kris Blindert (MPIA)
- Douglas Burke (Chandra Science Center/CfA)
- Michele Doherty (ESO)
- Erica Ellingson (Colorado)

- Giovanni Fazio (CfA)
- Jonathan P. Gardner (GSFC)
- David Gilbank (Waterloo)
- Mike Gladders (Chicago)
- Molly Hicks (Michigan State)
- Henk Hoesktra (Leiden)
- Jiasheng Huang (CfA)
- Chris Lidman (ESO)
- Carol Lonsdale (NRAO)
- Subhabrata Majumdar (TIFR)
- Piero Rosati (ESO)
- David Shupe (Herschel Science Center/IPAC)
- Paolo Tozzi (Trieste)
- Tracy Webb (McGill)
- Renbin Yan (Toronto)

http://www.faculty.ucr.edu/~gillianw/SpARCS

Current Generation of z > 1 Cluster Surveys

Infrared

SpARCS
ISCS (IRAC Shallow Cluster Survey)
UKIDSS DXS (UKIRT Infrared Deep Sky Survey Deep Extragalactic Survey)

Sunyaev-Zeldovich

APEX (Atacama Pathfinder Experiment)

ACT (Atacama Cosmology Telescope)

SPT (South Pole Telescope)

X-ray

XMM-LSS (XMM Large-Scale-Structure Survey)

XCS (XMM Cluster Survey)

XDCS (XMM-Newton Distant Cluster Project)

eROSITA (extended Roentgen Survey with an Imaging Telescope Array)

WFXT (Wide-Field X-ray Telescope)

Ongoing/Completed

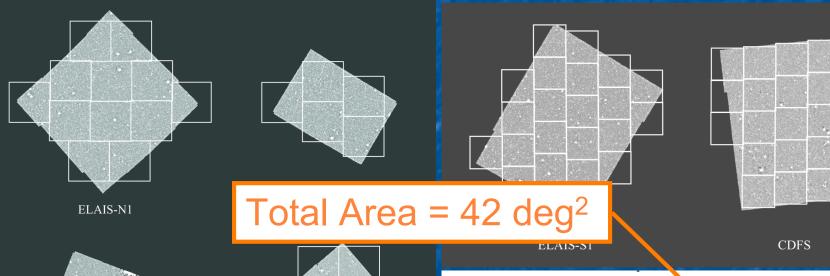
Planned/Proposed

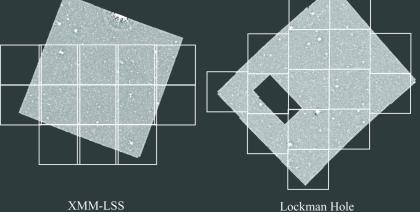
SpARCS Cluster Detection Technique

- Clusters are detected using an infrared adaptation of the efficient two-filter red-sequence technique "The Spitzer Adaptation of the Red-sequence Cluster Survey".
- At z ~ 1, rest-frame 4000 Angstrom break passes into IR =>
 SpARCS uses Spitzer [3.6] observations as "red" passband.
- SpARCS is a 25 night z' ("blue" band) survey of the 50 square degree SWIRE fields.
- ~200 new z > 1 cluster candidates. z'-[3.6] color gives photo-z.

Survey summarized in

Wilson et al., 2009, ApJ, 698, 1943 Muzzin et al., 2009, ApJ, 698, 1934 Southern Fields Northern Fields

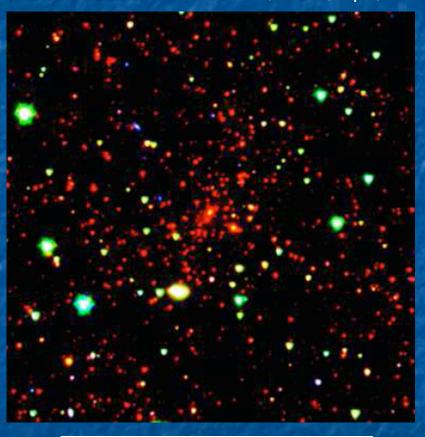


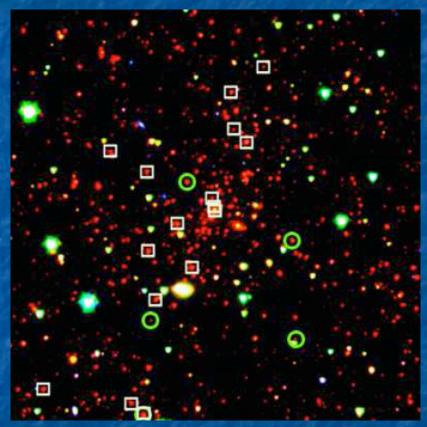

- CFHT SpARCS fields CTIO

"Northern Fields"

"Southern Fields"

Field	R.A.	Decl.	SWIRE 3.6 μ m	SpARCS z'	Usable
	J2000	J2000	Area	Area	Area
			(deg ²)	(deg^2)	(deg ²)
ELAIS-S1a	00:38:30	-44:00:00	7.1	8.3	6.5
XMM-LSS	02:21:20	-04:30:00	9.4	11.7	7.3
Chandra-Sa	03:32:00	-28:16:00	8.1	7.9	7.1
Lockman	10:45:00	+58:00:00	11.6	12.9	9.7
ELAIS-N1	16:11:00	+55:00:00	9.8	10.3	7.9
ELAIS-N2	16:36:48	+41:01:45	4.4	4.3	5.1
Total			50.4	55.4	41.9
				<u> </u>	_


http://www.faculty.ucr.edu/~gillianw/SpARCS



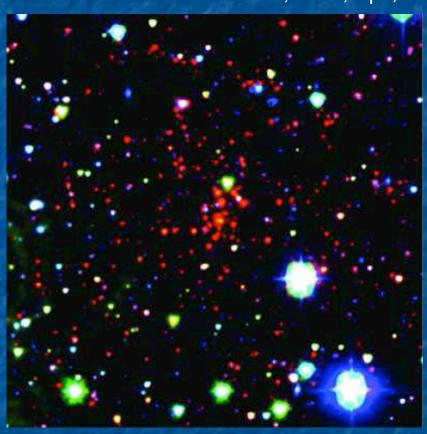
SpARCS J161315+564930 (z = 0.87)

Demarco et al., 2009, ApJ, submitted (Keck/LRIS observations)

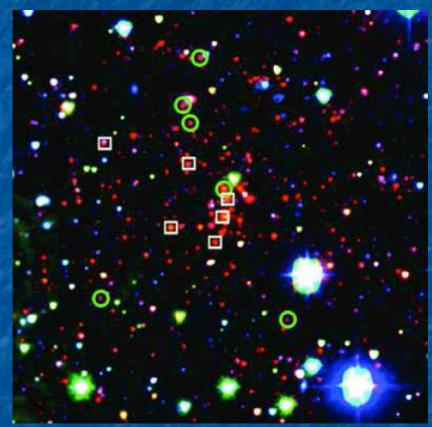
$$\sigma = 1230 \pm 320 \text{km s}^{-1}$$

$$M_{200} = (2.0^{+2.0}_{-1.2}) \times 10^{15} M_{\text{Sun}}$$

☐ 16 members


o non-member

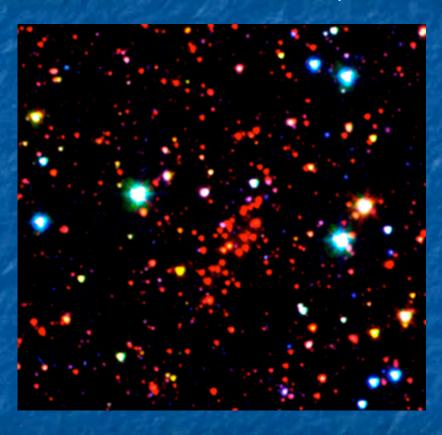
SpARCS J161641+554513 (z = 1.16)

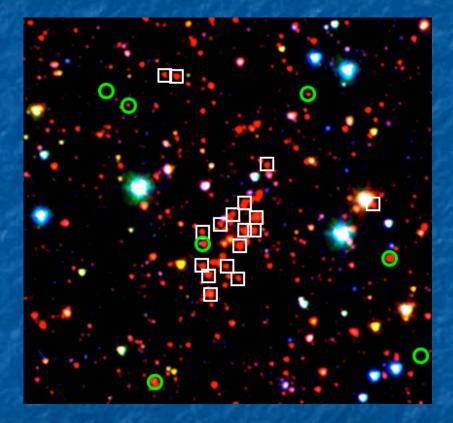


Demarco et al., 2009, ApJ, submitted (Keck/LRIS observations)

$$\sigma = 950 \pm 330 \text{km s}^{-1}$$

$$M_{200} = (7.7^{+11}_{-5.5}) \times 10^{14} M_{\text{Sun}}$$


■ 10 members on non-member

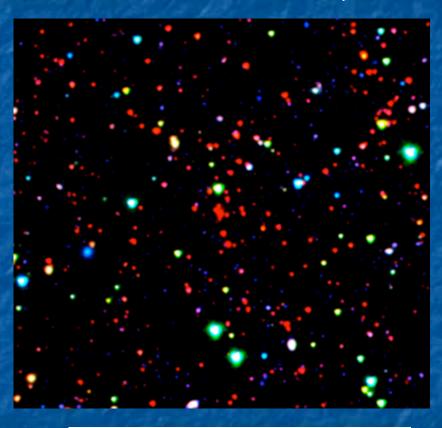


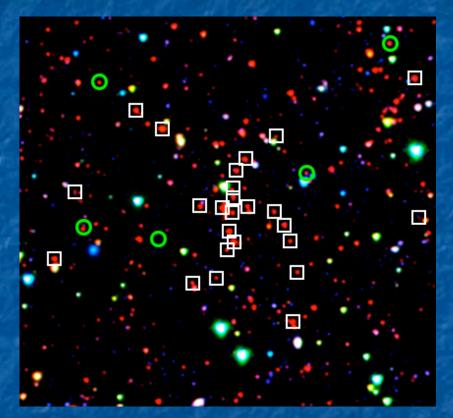
SpARCS J163435+402151 (z = 1.18)

Muzzin et al., 2009, ApJ, 698, 1934 (Gemini/GMOS-N observations)

$$\sigma = 490 \pm 140 \text{km s}^{-1}$$

$$M_{200} = (1.0 \pm 0.9) \times 10^{14} M_{\text{Sun}}$$


■ 17 members on non-member

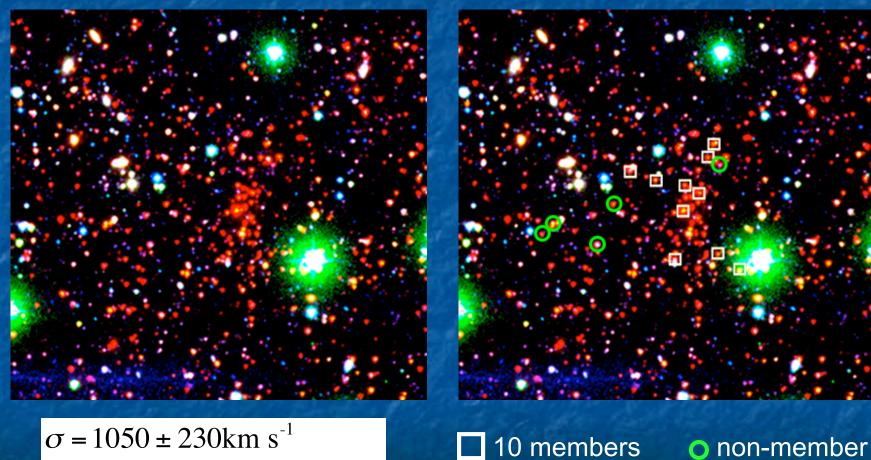


SpARCS J163852+403843 (z = 1.20)

Muzzin et al., 2009, ApJ, 698, 1934 (Gemini/GMOS-N observations)

$$\sigma = 650 \pm 160 \text{km s}^{-1}$$

$$M_{200} = (2.4 \pm 1.8) \times 10^{14} M_{\text{Sun}}$$


28 members on non-member

SpARCS J003550-431224 (z = 1.34)

Wilson et al., 2009, ApJ, 698, 1943 (Gemini/GMOS-S observations)

 $M_{200} = (9.4 \pm 6.2) \times 10^{14} M_{\text{Sun}}$

Clusters as Cosmological Probes

At z < 1, RCS & SDSS surveys (Gladders et al. 2007, Rozo et al., 2009) have measured constraints on $\Omega_{\rm m}$ and $\sigma_{\rm 8}$ from the evolution of the cluster mass function.

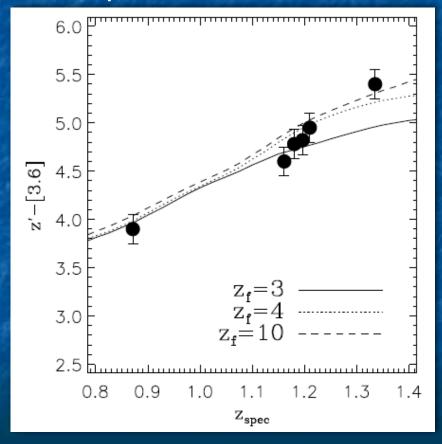
To do this efficiently, *the survey data itself* is used, not only to detect clusters, but also to estimate:

- redshift (from red-sequence color)
- mass (from optical richness)

The strongest constraints on ω , the equation of state of dark energy, are expected to come from cluster abundances at z > 1.

Can we estimate cluster redshift and mass at z > 1?

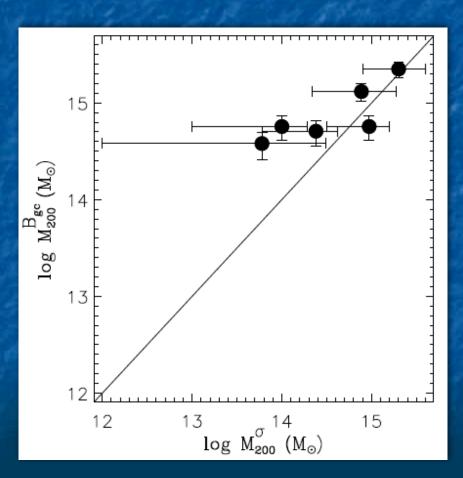
Yes!!



Cluster Redshift from z'-[3.6] color

Agreement is good between predicted BC03 color and spectroscopic z

SpARCS clusters


http://www.faculty.ucr.edu/~gillianw/SpARCS

Cluster Mass (from Richness)

Agreement is good between Mass estimated from Richness (Bgc parameter) and Mass estimated from Galaxy Velocity Dispersion (σ)

"GCLASS": The Gemini Cluster
Astrophysics Spectroscopic Survey
will measure 50 spectroscopic
redshifts in <u>each</u> of 10 rich SpARCS
clusters at z~1.1 (200 hour, six
semester program, ending in 2010B)
See next talk by Adam Muzzin &
poster by Erica Ellingson

Prospects are good for current generation of surveys aiming to estimate cluster redshifts and masses at z > 1 *directly* from optical-infrared imaging.

SpARCS Cluster Candidates at z > 1.34

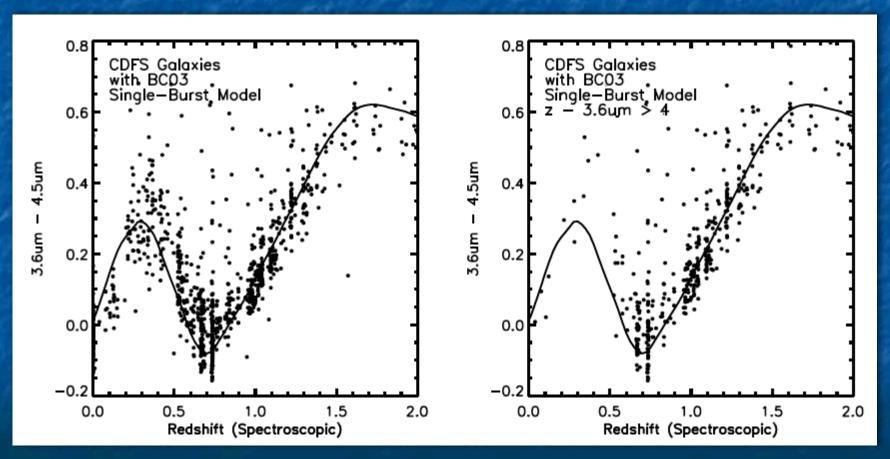
Using z'-[3.6] red sequence method, SpARCS detected fewer cluster candidates at z > 1.4 than expected.

Bruzual & Charlot model predictions and observations in good agreement to z = 1.2, but disagreement grows with increasing z.

Early type galaxies are about half a magnitude fainter at z = 1.5 than pre-survey models predict, assuming:

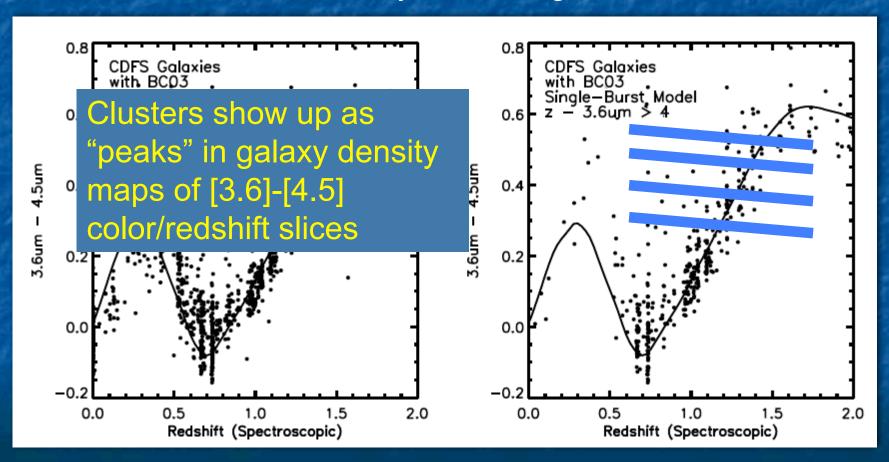
- No dust
- Single burst solar metallicity with formation redshift z_f = 4
- BC03 models

L* galaxies are only marginally detected at the limiting magnitude of the survey (z' = 24.0 Vega)


Need a new method to detect z > 1.5 clusters

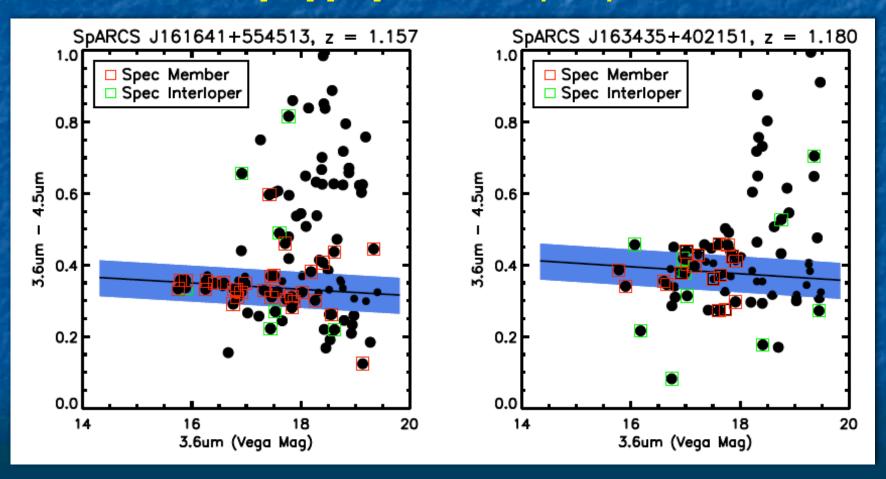
The Stellar Bump Sequence (SBS) Method

1) Note in right panel how red color cut (z'- [3.6] > 4 Vega) successfully excludes almost all z < 1 galaxies.



The Stellar Bump Sequence (SBS) Method

2) At z > 1, [3.6]-[4.5] color is an effective redshift indicator, because it is monotonically increasing.



SBS Method: Sanity Check

Confirmed clusters, detected using z'-[3.6] red-sequence method, <u>also show [3.6]-[4.5] stellar bump sequence</u>

