Radio Interferometry and ALMA
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PLAN

e Basics of radio astronomy, especially
Interferometry

e ALMA technical detalls

e ALMA Science

— More detalls in Interferometry Schools such as
the one at IRAM Grenoble at end October
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Some Facts

Rayleigh-Jeans:
(hv << KT)

In Janskys,
l.e.
102 Wm2Hz?!

Input power is about 10 watts
And, of coursef=A/D



More Definitions

Tg = Ts€" + Tym(1-€7)

“sys: (Trx T Tatm(l'eT)) e g
/

[a good T, at 3 mm is 40K]

1 magnitude=4db
(1=100-11db))
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atmospheric transmission
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Receiver itself,
atmosphere,
ground

and source

N

Analyzing bandwidth (for lines, need 3 resolution
elements on the line above the 3 power point)

Temperatures from thermal hot and cold load
measurements using the receiver.



Blackbody temperature Amax(mm) ~ 3/T(K)

Angular resolution 0 ("’)=0.2 A(mm)/baseline(km)
(For ALMA atA=1 mm, baseline 4 km, same as HST)

Flux Density and Temperature in the Rayleigh-Jdiams
S(mJy)=73.6 T(K)82 (")/ A%(mm)

Minimum theoretical noise for heterodyne receivers:

T,=hv/k=5.5( /115 GHz)
Sensitivity calculatar
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A parabolic radio telescope
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Sum of signals
from a source

d
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Difference
of signals
from a
source

Cover up
parts of

the dish.

The response
IS the square
of signals
from specific
structural
components
of the

source
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Sum of signals from
a source The parts

/ of the dish
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B/AIsu

Dimensional

One  __ | R(B) :/A(9> I, (0) exp [127”/0 (%Bﬂ)] d¢
Response T

Antenna pattern

(take out of integral) ~ S0Urce |
Baseline
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Interferometer response
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(u,v) and Image plane Distributions

UV Plane Distribution Image Plane Distribution
a) Discontinuous Outer Edge Near in Sidelobes
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Earth Rotation Aperture Synthesis

NORTH POLE

Above: 2 antennas on
the earth’s

surface have a
different orientation
as a function of time.

AXIS OF EARTH'S
ROTATION

Below: the ordering of
correlated data in
(u,v) plane.

-
-
—--'-————————__
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Gridding and sampling iru(v) plane
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Another Approach to Aperture
Synthesis

Question Is
“How to
make images |,
from the (u,v)
data?”
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Could

Imagine

that we

sample the
Electric field (in

4 both amplitude &

phase) over the
entire aperture.
But don’t have to!

JUSt measure
the correlations
Between points.
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The Dots Show Locations of Non-redundant Array
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(Difference is R-J)

T~ aMENT.,
AT}, = Y
Ae20V2 N t Av

A.Is effective collecting area of an antenna
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M about 1

T" oIS outside
atmosphere

N = %2n(n-1),
where n Is
# of antennas
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A Next Generation Millimeter
Telescope

A major step in astronomy - a mm/submm equivalent of VLT,
HST, NGST, EVLA

o Capable of seeing star-forming galaxies across thniverse
« Capable of seeing star-forming regions across thedkaxy

These Objectives Require:

« An angular resolution of 0.1" at 3 mm
e A collecting area of >6,000 sg m

« An array of antennas

« A site which is high, dry, large, flat - a high Andan plateau is
ideal
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ALMA + ACA
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Construction Partners

ESO for European Member States

NRAO/AUI for North America
— Includes Canada

NINS/NAQOJ for Japan (and Taiwan)
— This Is East Asia

Chile as host country
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ALMA: The Atacama Large Millimeter Array

A mm/submm equivalent of VLT, JWST

54 to 68 x 12-meter antennas, surface < 25 pmants,
twelve 7-meter antennas

e« Zoom array: 150m- 14.5 kilometers
* Receivers covering wavelengths 0.3 - 10 mm
e Located at Chajnantor (Chile), altitude 5000 m

 Europe, North America and East Asia sharing the
construction cost and operation

 Now a truly global project!

http://www.eso.org/projects/alma/
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Analog Receiver Block Diagram

ANTENNA

j MIXER

IF AMPLIFIER
(Narrowband Filter)

| DEMODULATION

(Detector

”ﬁb—‘

LOCAL
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Back End & Correlator

1

Digital De-Formatter

L |

IF-Processing .
(8 * 2-4GHz sub-bands) :

Data Encoder
12*106b/s

| |

Fiber

Y
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Correlator Set Up: Four IF Bands of 2 GHz Each Can be Analyzed by
32 Filters, 16 in Each Polarization

Region analyzed by a single spectrometer

hi— ___

DN

(we show 72 of

2 GHz wide IF the filters)

Spectrometer is a recycling correlator:
# of channels x total bandwidth=(128)x(2 GHz)
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Sensitivity (mJy)

1 Sept 08

Sensitivity of ALMA

Continuum (5 hours, 10)

9 (675 GHz)
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The ALMA
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VLA OBSERVATIONS OF HUBBLE DEEP FIELD

Hubble
Deep Field
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Hubble Deep Fie

Rich in Nearby Galaxies, Poor In
Distant Galaxies

Nearby galaxies in HDF Distant galaxies in HDF

41
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ALMA Deep Field
Poor in Nearby Galaxies, Rich in Distant
Galaxies
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ALMA Fmage Model image
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A = 333um

M / MsTar' - O-5MJup /1.0 Msun

planet

Orbital radius: 5 AU

Disk mass as in the circumstellar
disk as around the Butterfly Star
in Taurus

Maximum baseline: 10km,
t..=8h,

int
30deg phase noise
pointing error 0.6"

Tsys = 1200K (333um) /
220K (870um)

S. Wolf (2005)

A = 870um




Declination offset (arcsec)

Declination offset (aresec)

40

450/850 micrometer

images of Fomalhaut.

The contours are

13 and 2 mJy/beam.

O e T e ™ Beloware
deconvolved

iImages (data from

JCMT and SCUBA)
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Contributors to the Millimete
Spectrum

Ori{KL}), 129.9 to 170.65GHz

Spectrum courtesy B. Turner (NRAO)
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* In addition to dominating the spectrum of the alstUniverse,
millimeter/submillimeter spectral components dorine
spectrum of planets, young stars, many distankgea

» Cool objects tend to be extended, hence ALMA's dad@ to
image with high sensitivity, recovering all of albject’'s emitted
flux at the frequency of interest.

* Most of the observed transitions of the 125 knanterstellar
molecules lie in the mm/submm spectral region—Iserae
17,000 lines are seen in a small portion of thetspm at 2mm.

 However, molecules in the Earth’s atmosphere ihbilr study of
many of these molecules. Furthermore, the longeleagth
requires large aperture for high resolution, unadble from
space. To explore the submillimeter spectrumlestepe should

(i) orion Nebuia CISCO (U, K' & Ho (10 S(1) be placed at Earth’s highest dryest site.
w Subaru Telescope, National Astronomical Observatory of Japan January 28, 1999 46
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Orion KL: The Classical Hot Core Source
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Sample
spectra

from

IRC+10216
(R Leo),

a nearby
carbon

star
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Solar System Objects

 Herschel can easily measure outer planets, anehsnafo
these planets, as well as Trans Neptune Objects

— Highly accurate photometry
— Water on the giant planets and comets
— Follow up would be HDO, to determine D/H ratio

 ALMA and Herschel might be used to measure a commo
source at a common wavelength to set up a system of
amplitude calibrators

— ALMA provides high resolution image, but also ret
the total flux density
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