Dynamics of Galaxy Disks from HI and IFU observations

Marc Verheijen

UGC 8490

image-plane

outline

- Interpreting and modelling HI 21cm data cubes (signatures of bars, warps, streaming motions, lopsidedness)
- benefits & limitations of optical & near-IR Integral Field Units
- complementarity of HI and optical IFU data (2 examples)

Interpreting HI velocity fields

kinematic effect of bars

NGC 5383

UGC 6840

Verheijen & Sancisi (2001)

• streaming motions can mimic solid body rotation

• rotation curves based on velocity fields are meaningless inside bar region

kinematic effect of bars

NGC 5383

UGC 6840

Verheijen & Sancisi (2001)

• streaming motions can mimic solid body rotation

• rotation curves based on velocity fields are meaningless inside bar region

 $H\alpha$ velocity field (Fabry-Perot)

Hα velocity field (Fabry-Perot)

Kinematic modelling yields bar pattern speed, corotation radius and M/L. In this case: a fast bar, R_{cr} = 1.2 R_{bar} , M/L_I=2.0 ±1.0, nearly maximum disk.

NGC 5055

signature of warps

tidally excited? non-coplanar accretion? lifetime? structural properties of DM halo? NGC 4013

university of

groningen

Kapteyn

Astronomical Institute

NGC 2656

78 24 20 00 18 16 14 10 08 58 57 56 55 54 53 HIGHT ASCENSION (J2000) Line-of-sight may cross gas disk multiple times: velocity field may be meaningless! Full 3D modelling required to account for double profiles and velocity crowding.

Sparke et al (2008)

position-velocity diagrams

Gas & Stars in Galaxies - Garching, 10-13 June 2008

university of Kapteyn groningen Astronomical Institute streaming motions

Up to 80 km/s in outer plane of disk!

Boomsma (2007)

velocity field

Kapteyn

Astronomical Institute

university of

groningen

10

velocity field residual

wiggles in rotation curve

lopsided galaxies

MI01

Ŵ

university of

groningen

Kapteyn

Astronomical Institute

single-dish profiles

Richter &

Sancisi

(1994)

kinematic lopsidedness

groningen

Astronomical Institute

Astronomical Institute

groningen

Anomalous gas in NGC 2403

Ŵ groningen

university of

Kapteyn

Astronomical Institute

3D modelling

university of

groningen

Kapteyn

Astronomical Institute

20-50 km/s slower rotation
10-20 km/s radial inflow

A thick HI disk: inclined, warped, flared or slowly rotating?

university of Kapteyn groningen Astronomical Institute

Ŵ

A thick HI disk: inclined, warped, flared or slowly rotating?

Gas & Stars in Galaxies - Garching, 10-13 June 2008

university of Kapteyn groningen Astronomical Institute

Ŵ

Slow rotation is the better model.

Gas & Stars in Galaxies - Garching, 10-13 June 2008

university of

groningen

Kapteyn

Astronomical Institute

limitations of HI 21cm radio data

- relatively poor spatial resolutions
- often no HI in central regions
- limited to nearby universe
- only gas kinematics
- expensive to obtain with few telescopes
- steep learning curve (think in Fourier space)

Integral Field Unit spectroscopy

Advantages:

- multiple emission lines at once
- access to stellar kinematics
- probing all scales, from seeing/spaxel/diffraction limit up to FoV

Integral Field Unit spectroscopy

Advantages:

- multiple emission lines at once
- access to stellar kinematics
- probing all scales, from seeing/spaxel/diffraction limit up to FoV

But:

- small field-of-view compared to radio telescopes
- limited spectral resolution
- limited filling factor may require dithering
- night-time & good weather required
- cumbersome data handling (eg Fabry-Perot)

no DM halo cusps in LSB galaxies?

LSB galaxies are assumed to be dark matter dominated at all radii but a central cusp in the rotation curve is not observed.

arguments brought forward include:

- beam-smearing
- long-slit misalignment
- bars and non-axisymmetry
- 'baryon physics'

• ...

university of

groningen

cusps are seemingly impossible to detect

Kapteyn

Astronomical Institute

DDO 39 - Quest for the Holy Cusp

tilted-rings fit

Ŵ

university of

groningen

Kapteyn

Astronomical Institute

combined $H\alpha$ + HI rotation curve

DDO 39 - Quest for the Holy Cusp

tilted-rings fit

Ŵ

university of

groningen

Kapteyn

Astronomical Institute

improved VLA-B HI observations

R-band image

HI density map

HI velocity field

R-band luminosity profile

Kapteyn

Astronomical Institute

Ŵ

university of

groningen

(22)(22)

position-velocity diagram

Gas & Stars in Galaxies - Garching, <u>10-13 June 2008</u>

Bershady Verheijen Westfall Martinsson Swaters Andersen

goal : obtain a direct kinematic measure of mass surface density of the stellar disks via vertical stellar velocity dispersion σ_7

Bershady Verheijen Westfall Martinsson Swaters Andersen

goal : obtain a direct kinematic measure of mass surface density of the stellar disks via vertical stellar velocity dispersion σ_7

maximum disk

maximum halo

UGC 128 (LSB) - Hernquist halo

Bershady Verheijen Westfall Martinsson Swaters Andersen

goal : obtain a direct kinematic measure of mass surface density of the stellar disks via vertical stellar velocity dispersion σ_7

Bershady Verheijen Westfall Martinsson Swaters Andersen

goal : obtain a direct kinematic measure of mass surface density of the stellar disks via vertical stellar velocity dispersion σ_z

→ R≈10.000 spectroscopy of ~40 nearly face-on (incl=25°-35°) spirals at 3 disk scale lengths, or $\mu(B)=24.5$ mag/arcsec².

Bershady Verheijen Westfall Martinsson Swaters Andersen

goal : obtain a direct kinematic measure of mass surface density of the stellar disks via vertical stellar velocity dispersion σ_7

→ R≈10.000 spectroscopy of ~40 nearly face-on (incl=25°-35°) spirals at 3 disk scale lengths, or $\mu(B)=24.5$ mag/arcsec².

3D data products:

- $H\alpha$ velocity fields for pre-selection and high-resolution gas kinematics
- stellar Mglb and Call velocity fields and radial velocity dispersion profiles
- HI velocity fields for extended rotation curves (VLA, WSRT, GMRT)
- low resolution IFU spectroscopy to characterize stellar populations and the ISM (future)

SparsePak

UW - Madison

3.5m WIYN, Kitt Peak
71"x72" field of view
82 fibers (4.7" Ø)
75 science, 7 sky
R≈10.000 (Hα, Mglb, Call)

Kapteyn

Astronomical Institute

Ŵ

university of

groningen

3.5m CAHA, Calar Alto 64"x74" field of view 382 fibers (2.7" \varnothing) 331 science, 36 sky, 15 calib. R \approx 8.000 (Mglb, H α /H β /H γ)

NGC 3982

university of Kapteyn **Astronomical Institute**

groningen

SparsePak data

Galaxy spectra in radial bins

Call

university of groningen Kapteyn **Astronomical Institute**

UGC 463

university of

groningen

Kapteyn

Astronomical Institute

UGC 1635

. water far far far have made for the farmer - Marine Marine and a stranger and a -many when we are a second and the second se www.www.www.www.www. - MANY MALLAN MANNA MANANA MANANA Murray Martin Land and Manuth - White you want to get the set of the set o -wikhinyanilippiniyapyyndropyn/brilipwro "Hull have all would have a second and the second as the second and the second an n 5100 5150 5200 5250 Wavelength (A)

photometry

university of

groningen

Kapteyn

Astronomical Institute

$H\alpha$ velocity field

stellar VF & LOSVD

Astronomical Institute

From σ_z to M/L

$$\Sigma = \frac{\sigma_z^2}{\pi \operatorname{G} z_0} \quad (M/L) = \frac{\sigma_z^2}{\pi \operatorname{G} \mu z_0}$$

Kapteyn groningen **Astronomical Institute**

Summary

Decades of spectral line aperture synthesis imaging provides a strong basis for modelling and interpreting IFU data.

Combining 3D data from radio, mm, NIR and optical can be scientifically highly rewarding given their complementarity.

