Future Integral Field Spectrographs (at large telescopes)

Niranjan Thatte University of Oxford

Acknowledgements to the KMOS, MUSE, SPHERE, IRIS, HARMONI,EAGLE, NIRSpec, MIRI and other instrument consortia.

Proliferation of IFS at many observatories (big and small)

- SINFONI, FLAMES, VIMOS (ESO-VLT); GNIRS, NIFS (Gemini); OSIRIS (Keck); SAURON, OASIS (WHT) to name but a few!
- Bigger and better larger fields of view, more spaxels, higher throughput.
- More versatile deployable IFS (warm now, cryogenic soon)
- Special purpose high contrast planet finding applications
- Other wavelengths mid-IR (JWST-MIRI), far-IR (Herschel-PACS)

Slicing the Image

Future IFS instrumentation, Niranjan Thatte

Principle of the Image Slicer (used in SINFONI, GNIRS, NIFS)

output to spectrometer

The Advanced Image Slicer

- Advanced image slicer (Content 1998) uses power on slicing and pupil mirrors to reduce slit length.
- Additional field optics required to place exit pupil at correct location

Figure courtesy J. Allington-Smith

Future IFS instrumentation, Niranjan Thatte

The MUSE image slicer

courtesy MUSE project (Bacon, Laurent, et al.)

Future IFS instrumentation, Niranjan Thatte 3D2008, 13th June 2008

Image Slicer with de-magnification

The TIGRE concept (also SAURON, OASIS, OSIRIS)

The BIGRE concept

 Second set of lenslets to create dispersed focal planes rather than pupil planes. Necessary to avoid diffraction effects

Gratton, Antichi, et al. 2007

What is KMOS ?

- KMOS is a multiple-object cryogenic integral field spectrograph designed for intermediate resolution spectroscopy in the 0.8-2.5µm range
- 24 robotic pickoff arms patrol a 7.2 arcmin diameter field each of which feeds 2.8x2.8 arcsec FoV sampled at 0.2 arcsec to an image slicing IFU
- The IFUs are consolidated in groups of 8 which feed one of 3 identical spectrographs providing R~3500 spectra in the IZ, J, H & K bands

Top Level Scientific Drivers (KMOS)

- Investigate the physical processes which drive galaxy formation and evolution over redshift range 1<z<10.
- Map the variations in star formation histories, spatially resolved star-formation properties, and merger rates
- Obtain dynamical masses of well-defined samples of galaxies across a wide range of environments at a series of progressively earlier epochs

KMOS Science Cases

- How did galaxies form ?
- How did galaxies grow ?
- What are their masses as function of time ?
- How did galaxies acquire their angular mom. ?
- How does metallicity grow with time ?
- What is the role of mergers ?
- What is the role of AGN/feedback
- What is the role of environment ?

Systems Architecture

C

Niranjar, T

Prototype Pickoff Arm

Status and Schedule

- Phase B start July 2004
- Preliminary Design Review May 2006
- Final Design Review Sep 2007
- Prelim Acceptance Europe Sep 2010
- Prelim Acceptance Chile Mar 2011

Instrument Overview

Lyon - Potsdam - Toulouse - Zurich

Focus	Nasmyth B UT4
Deformable Secondary Mirror	1170 actuators
Laser guide stars	4 × 5-10 Watts
Instrument	Integral Field Spectrograph
Number of IFU units	24
Detectors	4k x 4k Deep depletion CCD
Simultaneous	480 – 930 nm (nominal)
Wavelength Range	465 - 930 nm (extended)
Resolving Power	1750@465nm - 3750@930nm
Datacube Size	1570 MB

MICE

Gattingen

N.

eiden

-

ESO

1

Wide Field Mode

Field of View	1x1 arcmin ²
Spatial Sampling	0.2x0.2 arcsec ²
Spectra/Exposure	90,000
Sky Coverage in AO	70% @ galactice pole 99% @ galactic equator
AO Energy gain wrt seeing	×2

MUSE

Narrow Field Mode

Field of View	7.5x7.5 arcsec ²
Spatial Sampling	25x25 milliarcsec ²
Spectra/Exposure	90,000
Spatial resolution	5-10% Strehl Ratio @ 650nm 10%-20% Strehl Ratio @ 850nm

MUSE

Instrument Design (2)

Project Planning

Pre-Phase A & Phase A

NUSE

MUSE fast facts

2nd generation VLT instrument A 24 IFUs (slicer + spectrograph + detector) AO 2nd gen system incl 4 laser guide stars 400 M pixels/exposure 80 hours integration

USE

CRAL, AIG, AIP, ETH, LATT, NOVA & ESO 21.8 M€ (incl 185 FTE) July 2011 PAE 255 GTO nights

Formation & evolution of galaxies Nearby galaxies Resolved stellar populations

IRIS team

UCLA (lenslet spectrograph and system)	CALTECH (Slicer spectrograph, IRIS WFS)	UCSC (ADC and Spectrograph optics)	Subaru (Imager) Tomonori Usuda Masahiro Konishi Ryuji Suzuki	
John Cranfield Glenn Fox <i>James Larkin (PI)</i>	<i>Anna Moore (co-PI)</i> Rich Dekany ME	Brian Bauman Drew Phillips		
Ian Maclean Alex Vaucher Jason Weiss	HIA (IRIS WFS, interface)	IRIS Science Team		
	David Loop Joeleff Fitzsimmons Murray Fletcher	TBA (next week!) courtesy An	na Moore (Caltech)	

James Stilburn

IRIS Requirements

- Spectrograph
 - Wavelength Range 0.8-2.5 microns
 - Spectral Resolution > 3500
 - Bandwidth: Complete bands at one time ~20%
 - IFS with Four Plate Scales
 - 0.004, 0.010, 0.025, 0.050 arcsec per sample
 - FOV > 64x64 spatial samples
 - 0.25"x0.25" to 3.2"x3.2"
 - >8,000,000 spatial/spectral pixels
- Imager
 - >15 arcsec field of view
 - 0.004 arcsec plate scale
 - Wavefront Error < 30 nm
 - Distortion correctable to 50 microarcsec.
 - Atmospheric Dispersion Correction < 1 milliarcsec

Lenslet and Slicer Spectrograph

 Lenslet spectrograph offers excellent image quality (low wfe)
- 0.004" and 0.009" scales

- Slicer offers 2x larger field of view and higher SNR
 - -0.025" and 0.050" scales

Lenslet design from IRIS feasibility study

Future IFS instrumentation, Niranjan Thatte 3D2008, 13th June 2008

courtesy Anna Moore (Caltech)

Slicer design from IRIS feasibility study

IRIS Status

- Completed Feasibility study March 2006
- Now starting Conceptual study.
- Concept design review May 2009
- Goal is to deliver to HIA for integration with AO system in 2013.
- On sky 2016.

HARMONI (E-ELT)

HARMONI: A single field, wide band, integral-field spectrograph for the E-ELT

HARMONI is a proposed optical-NIR, adaptive optics assisted, integral field spectrograph designed to exploit the early-light capabilities of the European ELT

Phase A study: March '08 — Dec '09

science & Technology Facilities Council UK Astronomy Technology Centre

High-z LAE	1" G	enzel († al. 06, prster Schreiber et a	tics Ηα 0.5" (4kpc)	Ste	avidson	flows	Exople (Coronag	anets (raphy)
DL, NIR Imager	imaging	Nasm./LTAO , MCAO	0.9-2.5	>30"	A 4	wide, n. bands	~ all	ONIRICA @ OWL
Narrow Field Spectrograph	spectroscopy	Nasm./SCAO , LTAO	0.6-2.5	1"/ 10":	20 / 50	3000, 20000:	~ all	Not studied
High Resolution Vis Spectrogram	spectroscopy	Coude/ GLAO	0.4 -0.8 ept del	Point VErific	, high	150000 quality s	C2, C7 cience	CODEX
Planetary Imager Spectrograph y	specifys	Nasm/ EXAO	ument	tõ ² ",f		faint so	urces ^{S3, S9}	EPICS
<mark>NIR Mdis</mark> CO possi	v sted cipy ble ^{nt} with ^o a	deep∴imag an É ^{to} to	ing-su	rveys	(@n G ‱J	WSoto), w	hich, isoon	Y WFSPEC, MOMSI
NIR MONAFro diffrae	wpfield+0 multiplex 20 ction limit	f-viewnmat _{Nas/MCAO} ed over a	ch ec t small t	o early ield	ℊⅎÅℨ℮	apatoilitie	es <u>- ⁶⁴, ñ</u> ear	MOMSI
MIR Ingenigle	e dible effect r (+11-mited spectroscopy	nodeorathe LTAO	er™than	sửrve	y⁰moc	le [∞] à ʰä⁴M	USE ^{\$9, \$5,} 69, C10	MIDIR

Single-Field Wide-Band Spectrograph (SFWBS)

Primary mode

- Integral Field
- Medium Spectral Resolution
- NIR
- GLAO & LTAO/MCAO

Optional modes

- Visible-red wave bands
- High Spectral Resolution

SPIFFI/SINFONI

- NIR: 1.0-2.5µm
- ≈ 2000 spectra
- R≈2000 4000
- 0.25" 0.025"
- 8"x8" 0.8"x0.8"
- VLT/SINFONI AO module

SPIFFI

SWIFT

- I/z: 0.65-1.0µm
- ≈ 4000 spectra
- R≈4000
- 0.235" 0.08"
- 22"x10" 7.5"x3.5"
- Palomar 5m / PALAO

xford

hysics

Baseline Instrument Specifications

Field of view	5-10", likely 2:1 format; ~100x200 spaxels
Spatial pixel scales	At least 3: 50 mas, 4 mas, 15 mas(TBD)
Wavelength range	0.8-2.4µm, visible extension
Spectral resolution	R > 4000, 20000(?)
Simultaneous wavelength coverage	2K-4K spectra possible At least single band at medium/high res; goal: entire spectral range at once
IFU technology	Image slicer? (best fill factor on detector)
Throughput	>35% average, incl. detector Q.E. (similar to SINFONI)
AO performance	GLAO: 3-5x gain in EE in 50 mas spaxel (abs. value 3.7% at K with GLAO!) LTAO: K-60%, J-20%, NGS-19 th mag. MCAO: K-50%(uniform), NGS-19 th /20 th

The E-ELT focal stations

3D2008, 13th June 2008

EAGLE Science Requirements

- High spatial resolution (~ 75 milliarcsec):
 - Requires AO
- Extended sources (~2x2 arcsec):
 - For galaxies, clustered stellar objects etc
 - Integral Field Units needed
- Source counts for statistics:
 - Multi-object instrument (20+)
- Efficiency:
 - Wide-field (5 arcmin) to ensure all channels are used
- Spectral coverage:
 - From Calcium Triplet, through to K band
- Spectral resolution:
 - R~4,000 (to resolve OH lines, one atmos. band in ~2000 pix)
 - R~10,000 for precise velocities/abundances of stellar pops.

Multi-Object Adaptive Optics

Future IFS instrumentation, Niranjan Thatte 3D2008, 13th June 2008

EAGLE Science Requirements

Parameter	Requirement
Patrol Field	5 arcmin diameter
Science subfield (IFU FOV)	> 1.5 arcsec
Multiplex	20 to 60
Spatial Resolution	30% EE in 75mas (H-band)
Spectral resolution	4,000 & 10,000
Wavelength range	0.8-2.5 μm

EAGLE Phase A Study

- French/UK instrument 50%/50% split
 - French PI: Jean-Gabriel Cuby (Marseille)
 - UK co-PI: Simon Morris (Durham)
 - Project Scientist: Matt Lehnert (Paris)
 - Instrument Scientist: Chris Evans (UK ATC)
- 2 year study, formally started Sept. 2007
- Phase 1 review with ESO in July
- Funding:
 - UK: STFC ELT funding
 - STFC PPRP bid (ELT R&D in "medium-high" priority from STFC programmatic review)
 - France: CNRS & other channels
 - Additional funding via EU-FP7
 - ESO

EAGLE Target Acquisition System

Mechanical Support and Packaging

Summary

- In the next decade, IFS observations well become the main mode of observing at large and small telescopes, at many different wavelengths, on the ground and in space.
- AO (LTAO, MCAO, MOAO) and large telescopes will provide a D⁴ advantage, thus dramatically improving the sensitivity of these new instruments.
- These instruments are increasingly complex, require ~200 personyears of effort, cost >10M€, and weigh ~10 tons.
- The funding for none of these is automatic, if You think that these super-IFS are critical to achieving Your science goals, You need to actively lobby to get these instruments built.
- There will be a fantastic amount of software required to reduce and analyse these data properly, we really need to make a concerted effort to make sure all the tools we need are ready in time.