

Intermediate Mass Galaxy Evolution Sequence

Mathieu PUECH ESO/GEPI & the IMAGES Coll. (P.I.: F. Hammer)

M. Puech^{1,2}, H. Flores², F. Hammer², Y. Yang², B. Neichel², M. Lehnert², L. Chemin², N. Nesvadba², B. Epinat⁵, P. Amram⁵, C. Balkowski², C. Cesarsky¹, H. Dannerbauer⁶, S. di Serego Alighieri⁷, I. Fuentes-Carrera², B. A. Kembhavi³, Y. C. Liang⁹, G. Östlin¹⁰, L. Pozzetti⁴, C. D. Ravikumar¹¹, A. Rawat^{2,3}, D. Vergani¹², J. Vernet¹, and H. Wozniak⁸, R. Delgado, M. Rodrigues

IMAGES Survey

Sample selection $M_J < -20.3 \& 0.4 < z < 0.9$ $M_{stellar} > 1.5 10^{10} M_{o} (~M*)$ Integrated propertiesFORS2 (600RI+600z)SpitzerChandra

Morphology ACS imagery

Kinematics VLT/FLAMES-GIRAFFE

This talk: Sub-sample with $EW_0([OII]) > 15 \text{ Å}$ and 0.4 < z < 0.75

FLAMES/GIRAFFE on the VLT

IFU Mode: 15 x 3''x2''arrays (20 sq. µlenses, 0''.52)

15 IFUs deployable over a 20 arcmin FoV with $R_{effective} > 13000 \rightarrow$ the [OII] doublet can be resolved

FLAMES/GIRAFFE on the VLT

IFU Mode: 15 x 3"x2" arrays (20 sq. µlenses, 0''.52)

15 IFUs deployable over a 20 arcmin FoV with $R_{effective} > 13000 \rightarrow$ the [OII] doublet can be resolved

CFRS03.0488, z=0.46, (3"x2")

FLAMES/GIRAFFE on the VLT

IFU Mode: 15 x 3''x2''arrays (20 sq. µlenses, 0''.52)

15 IFUs deployable over a 20 arcmin FoV with R_{effective}>13000 → the [OII] doublet can be resolved CFRS03.0488, z=0.46, (3''x2'')

Velocity dispersion maps

<u>Provided by</u>: the absence of cross-talk between individual spectra.

from Blais-Ouellete, Amram et al, 2002 (Fabry-Perot/Halpha)

VFs but also σ-maps

<u>Provided by</u>: the absence of cross-talk between individual spectra.

 $\sigma_{\text{pixel}} = \sigma_{\text{random}_{\text{motions}}} \otimes \Delta V_{\text{large}_{\text{scale}_{\text{motions}}}}$

VFs but also σ -maps

Provided by: the absence of cross-talk between individual spectra.

 $\sigma_{\text{pixel}} = \sigma_{\text{random motions}} \otimes \Delta V_{\text{large scale motions}}$

At low spatial resolution, dispersion maps of rotating disks do show a peak in their dynamical center

Velocity map

All galaxies are assumed to be rotating disks:

- their large scale motions are due to rotation
- \bullet simulation of corresponding VF and $\sigma\text{-}$ map
- comparison of the derived σ -maps to the observed ones (relative difference of amplitude ϵ vs. σ peak distance Δr)

- Rotation seen in the VF
- Off-centered σ peak

No obvious structure in the

VF/σ-map

Flores et al (2006) Puech et al (2006a) Yang et al (2007)

> Coming soon: ~30 more gals @ z~0.7-0.9

 Statistics in the sample

 Type # fraction

 RD 20 (32%)

 PR 16 (25%)

 CK 27 (43%)

 UC 6 (9%)

Morphology

Semi-automatic decision tree: GALFIT + Color maps + Visual inspection

Morpho-kinematics

Agreement between kinematic and morphological classifications

16% of the sample is classified as Sp+RD

33% of interm.-mass galaxies are Sp+RD

2 times less SpRD than today

Neichel et al (2008)

K-band and Stellar mass TFR

Complex Kinematics Perturbed Rotators Rotating Disks

Local relation (SDSS galaxies; Hammer et al. 2007)

Dispersion of TF explained by non-relaxed galaxies
 First detection of a significant evolution of the K/sm-TF relation
 RDs grew up by a factor ~ 2 in stellar-mass since z~0.6

Specific Angular Momentum

 $j_{disk} = 2R_d V_{max}$

A random-walk evolution of j_{disk}

Dispersion of CKs consistent with major mergers

Puech et al. 2007

First detection of a minor merger at z~0.6

- Perturbed Rotator at z~0.6
- Stellar Mass ratio 1:18 Log(M_{stellar}/M_o)=9.5:10.7
- $\geq \text{SFR}_{\text{IR+UV}} \sim 21 \text{ M}_{\odot}/\text{yr}, \text{ enhancement } \sim 3 \text{ M}_{\odot}/\text{yr}$

A very plausible physical process for PRs

Puech et al 2007

A forming disk at z~0.6?

Conclusions

GTO+IMAGES: representative sample of 63 M* emission line galaxies at $z\sim0.6$

- Large fraction of dynamically non-relaxed galaxies: 40% (accounting for all
- $M_J(AB) < -20.3$ including quiescent E/S0/...), in agreement with morphology
 - \checkmark explains the huge dispersion of the distant TF
- Important evolution of rotating disks since z~0.6:
 - \Rightarrow z=1to 0.6 (~2Gyr): inside-out growth of disks
 - \Rightarrow z=0.6 to 0 (~6 Gyr): doubling of stellar mass (cf. TFR) and number
- Cause of disturbed kinematics?
 - PR = minor mergers + other local mechanisms (e.g., clumps) ?
 - CK = major mergers (cf. AM)?

Combination of 3D spectro. + morphology reveals that violent dynamical processes are at work in $z\sim0.6$ progenitors of today's spirals

Consistent with major mergers but what about other scenarios, e.g., cold gas accretion (Dekel+2006; Birnboim+2007) ?

3D predictions needed!

Advertisement slide: IMAGES Papers

New spectroscopic redshifts from the CDFS and a test of the cosmological relevance of the GOODS-South field*

("IMAGES 0") Ravikumar et al. 2007, 465,1099

IMAGES* I. Strong evolution of galaxy kinematics since z=1

Yang et al. 2008, A&A, 477, 789

IMAGES* II. A surprisingly low fraction of undisturbed rotating spiral disks at z ~0.6.

The morpho-kinematical relation 6 Gyrs ago

Neichel et al. 2008, A&A, 484, 159

IMAGES*-III: The evolution of the Near-Infrared Tully-Fisher relation over the last 6 Gyr

Puech et al. 2008, A&A, 484, 173

IMAGES-IV: Strong evolution of the Oxygen abundance in gaseous phases of massive galaxies since $z \sim 0.8$

Rodrigues et al., To be submitted