Giant Outflows in z~2 Radio Galaxies

"Smoking Gun" Evidence for AGN feedback at the Quasar Peak 4

Nicole P.H. Nesvadba, Observatoire de Paris

Collaborators: M. D. Lehnert, C. De Breuck, D. Downes, R. Neri, W. van Breugel, F. Walter, C. Kaiser, L. Binette, G. Kauffmann, et al.

$E_{bind} = 10^{60} \text{ erg}$

Silk & Rees (1998): AGN feedback as a solution to the "hierarchy problem" why are massive galaxies "old, red, and dead" ? why is the number of massive galaxies so small ?

Kpc-scaled winds in powerful AGN? PMAS, Calar Alto Christensen et al. (2006) Q1802+5616, Lya @ z=4.158 -11 25 t Q1802+5616 (scaled 1:3) No Lya emission radio-quiet 20[10⁻¹¹ erg s⁻¹cm⁻² Å⁻¹] $\mathbf{p}_{\mathbf{f}}$ 15 10 $3 \circ$ $\frac{67}{1}$ ۴ \mathbf{z} 0 -2-46000 6200 6400 6600 $\Delta \alpha$ Wavelength [Å]

90 % of powerful AGN do not show extended gas ...

90 % of powerful AGN do not show extended gas those that do (10%) are radio-loud Nicole Nesvadba – AGN-driven Winds in HzRGs

McNamara et al. (2006)

 $E_{kin} \sim 10^{60-61} \text{ erg}$ $t_{dyn} \sim \text{few x } 10^7 \text{ yrs}$ M ~ 10^{14} M_{s}

0.9 Mpc

Impact on early-type galaxies at low z

Morganti et al. (2005)

jet-driven outflows of neutral gas nearby powerful radio galaxies Best et al. (2006)

heating (radio source) ≈ **cooling** SDSS study of nearby early-type galaxies

Nicole Nesvadba – AGN-driven Winds in HzRGs

AGN outflows at high z ? The star formation era

Nicole Nesvadba – AGN-driven Winds in HzRGs

AGN outflows at high z ? The star formation era

Nicole Nesvadba – AGN-driven Winds in HzRGs

High-redshift radio galaxies

Tracing the upper end of the galaxy mass function at z>2

Nicole Nesvadba – AGN-driven Winds in HzRGs

Nicole Nesvadba – AGN-driven Winds in HzRGs

A systematic study of z~2 radio galaxies

Morphologies of high-z radio galaxies Stellar continuum: compact; ionized gas: often extended

Nicole Nesvadba – AGN-driven Winds in HzRGs

Gas kinematics

[OIII]5007 velocities / widths

MRC0406-244, z=2.42

also: Tadhunter et al. (1991), Villar-Martin et al. (1999), Baum et al. (2000)

Gas kinematics [OIII]5007 velocities / widths

MRC0406-244, z=2.42

offset [kpc]

velocities: +- 600 km s⁻¹

10

-20

5

3

-10

20

30

40

40

30

Jet Orientation: Evidence for Outflows

Nesvadba et al. (2008), A&A submitted

passage through magnetized plasma \longleftrightarrow **depolarization "Laing-Garrington effect"** Laing (1988), Garrington et al. (1988)

Jet and ionized gas: Coordinated growth

predicted radio morphologies

(Sutherland & Bicknell, 2007)

observed emission line morphologies (H α + [NII])

Jet and ionized gas: Coordinated growth

predicted radio morphologies

(Sutherland & Bicknell, 2007)

observed emission line morphologies (H α + [NII])

D_{radio} < 0.4" (2 kpc)

Jet and ionized gas: Coordinated growth

predicted radio morphologies (Sutherland & Bicknell, 2007)

observed emission line morphologies (H α + [NII])

D_{radio} < 0.4" (2 kpc)

Evidence for jet-driven outflows

Correspondence between the radio and line emission

Evidence for jet-driven outflows

Nesvadba et al. (2007) A&A 475,145 Nesvadba et al. (2008)

Correspondence between the kinematics and the jet properties

Impact on the ISM: Ionized and ...

lonized gas mass:

Impact on the ISM: Ionized and molecular gas

lonized gas mass: Molecular gas mass: [OIII] map $M_{HII} = L_{H\alpha} m_{p} / (h v_{H\alpha} \alpha_{eff}^{H\alpha} n_{e})$ $M_{H_2} = X_{co} \times 2.5 \times 10^6 S_{co}$ TXS0828+193, z~2.6 WFPC2 F606W $H\alpha$,[NII] 4000 3000 [SII] 2000 0 offset [arcsec] **IRAM/PdBI** [SII] doublet $H\alpha/H\beta$ map @ 3mm: ~ 3 σ continuum density extinction consistent with radio source 2000 km s⁻¹ bandwidth, ~ 2 x $\Delta v_{outflow}$ CO(3-2): $M_{H_2} \le 10^{10} M_s$ $M(H_{ion}) \sim few \times 10^{10} M_{s}$

offset [kpc] -30 -20 -10 0 10 20 30 40

A compact source: TN J0121+1320

Impact on the Host Galaxy

(A) stellar mass assembly

Nesvadba et al. (2006), ApJ 693,651 Nesvadba et al. (2008), A&A submitted

Outflows in HzRGs correspond to the dynamical requirements of AGN feedback as postulated by the evolutionary models

Impact on the host galaxy (B) Chemical Evolution

Nesvadba et al. (2006), ApJ 693,651

Differential Enrichment as "Cosmic Clock", abundance ratios in stellar atmospheres

[α / Fe] enhancement

 $t_{SB} < 10^9 \text{ yrs}, M(10^8 \text{ yrs}) \sim 10^{10-11} M_{\odot}$

Efficiency of AGN feedback: A global view

Scannapieco et al. (2004) .Nicole Nesvadba – AGN-driven Winds in HzRGs

AGN-driven outflows do exist at z~2 ... but it's the jet Mass

ionized molecular.CO \leq M_{ion} >IVI_{H2.cold}

few x
$$10^{10} M_s$$

few x $10^{10} M_s$
M

~ ISM of 10¹¹ M_s galaxy at z~2

