Integral Field Spectrography

Techniques & Specifics

Eric Emsellem

GALPAC - CRAL

emsellem@obs.univ-lyon1.fr

IFUs

Contributions

- Pierre Ferruit
- Richard McDermid
- Martin Roth

&

- Jeremy Allington-Smith
- Roland Bacon
- Guy Monnet
- James Turner
- Peter Weilbacher

Menu

Historical perspective 1D – 2D – 2.5D and 3D Basics of 3D spectroscopy Techniques and examples Specifics From sky to cubes Basic principles A (short) word on Softwares

Concluding remarks

3D Spectrography

Historical perspective

From 1D to 2D

- ♦ Aperture spectrometry → Long-slit spectroscopy
- Efficient use of
 2D photographic plates
 CCDs
- « Easy » data reduction

Why is 2D not enough ?

- Morphology of real object rarely follows slit geometry
- Centring on the target
- Light losses
- The slit effect
- Spectral resolution depends on the slit itself

How to squeeze 3D in 2D?

- Modern detectors are 2D (optical, near-infrared)
- We can thus either fix one spatial or one spectral dimension and scan with time:
 - Fabry-Perot interferometers
 - Scanning long-slit spectrographs

But also:

- e Fourier Transform spectrometers
- e Hadamar Transform spectrometers (masks)

Fabry-Perot interferometers

***** A Fabry-Perot etalon acts as a interference filter:

- Incidence θ
- Wavelength λ

Fabry & Perot 1901, ApJ 13, 265

- Index n
- Inter plate t

Fabry Perot interferometers

- Tough data reduction (but doable)
- ◆ Very efficient for emission lines!
 @ TAURUS (AAT, WHT), HIFI (CFHT)
 @ CIGALE (→ 3D NTT)
 - @ SAO (6m) Y

Canal (Z)

Tully 1973

MS1

M33

Carranza et al. 1968

Scanning: more space

- * FPs limited to single emission lines
- Not ideal to tackle continuum + absorption lines

NE

* Problem of TIME scanning:

what about long-slits?

Fourier transform spectrometer

Frequency scanning:

@ Bear at CFHT: 2 arms interferometer

Scanning with time

Problems linked with the scanning:

- **•** Variation of the observing conditions
 - Data characteristics & controls ?
- **@** Accuracy of positioning to rebuild the 3D data
- Need of relatively bright objects

Inhomogeneities in the reconstructed datacubes

3D Spectroscopy

The Dawn of Speciation

On the way to real 3D

* 1960's : aperture photometry to long-slit

Wide spectral range

* 1970's: Fabry Perot interferometers

e Large field of view, but narrow spectral range

* 1980's:

- e advent of modern CCDs
- New ways to split the field
 - Using Fibers
 - Using micro-lenses
 - e ...

Advantage of true IFUs

- Large spectral range (but smaller FOV than FPs)
- Multiplex advantage
 - Save telescope time (not necessarily)
 - Homogeneous data (?)
 - Spatial location and PSF can be measured a posteriori
- Spectrophotometry !

Optical/Near Infrared spectroscopy

- * The Atmosphere (ground-based instruments)
 - Transparency variations
 - Sky Background: emission and absorption
 - - Typical **PSF** widths :
 - 0.5 2 arcsec in the optical
 - 0.3 1 arcsec in the NIR
 - But usually not a Gaussian-like PSF
 - Possibility to fully exploit Adaptive Optics
 - Ø Differential refraction

Optical/Near Infrared spectroscopy

* Specifics:

Spectra with Continuum and absorption lines

Resolutions

- @ Spectral = Shannon (Nyquist)
 - ${\scriptstyle {\rm \ensuremath{ \bullet}}}$ Usually FWHM or σ
- @ Spatial = SPAXEL shape?

 $\bigcirc \Box \bigcirc$

- Difference between resolution and sampling!
- ${\scriptstyle {\rm \scriptsize \ensuremath{ \bullet }}}$ Usually FWHM or σ

Splitting the field

Fiber fed spectrographs

INTEGRAL @ the WHT (4.2m)

- e Several configurations
- Dedicated Sky fibers

Fiber-fed spectrographs

Advantages :

- e Simplified output onto a slit
- Full use of the CCD for the spectral coverage

Disadvantages:

- e Light losses, performances
- Stability of the instrument
- Ø Spectrophometry?

The TIGER concept: The trick

Uniform illumination at the entrance of the array

The array samples the field and focus the light into micropupils

The array is rotated to avoid overlapping between the spectra

The micro-pupils are dispersed via a classical spectrograph

A filter limits the Y range

OASIS Raw Exposures

Flatfield exposure **Object** exposure

Micropupil exposure

Neon Calibration exposure

ESO 08

Lens Array - Raw Data

Arc

Continuum

Galaxy

ESO 08

TIGER-like spectrographs

- TIGER (CFHT), OASIS (CFHT/WHT)
 ... SAURON (WHT), SNIFs (UH 2.2m)
- SIRIS (Keck) in the NIR

Advantages :

- Spatial & spectral information
- No light loss (in principle)
- Spatial scale can be easily changed
- Disadvantages:
 - Complex data format
 - Requires clean separation of spectra on the CCD
 - Not optimal use of the CCD pixels

Fiber + Lenses

- * PMAS, CIRPASS
- *** VIMOS, FLAMES, GMOS**

Advantages :

- Separation of spatial and spectral information
- No light loss
- Reconfiguration of SPAXELS on the detectors
- e Better controled stability (?)

* Disadvantages:

e Fibers...

IFUs

Spectrophotometric properties?

IFU Techniques: Optical Fibres

Pros:

- e Flexible design
- Optimise CCD area

Cons:

- Poorer throughput
- Calibration-heavy

GMOS-IFU

* 0.4 - 1.0µm
* Hexagonal - contiguous
* 5 x 7 arcsec @ 0.2 arcsec

Field to slit mapping

ESO 08

VIMOS-IFU

◇ 0.4 - 1µm ◇ 54x54/27x27 arcsec @ 0.7/0.3" ◇ 4 x EEV CCDs

VIMOS Raw Data

VIMOS – VLT

Wavelength

ESO 08

IFUs

IFU Techniques: Optical Fibres

FLAMES - VLT

IFU Techniques: Principles of a Slicer

IFU Techniques: Image Slicer

Pros:

- Compact design
- e High throughput
- e "Easy" cryogenics

Cons:

Ø Difficult to manufacture

16 x 25 pixel detector array

spectral dimension

IFUs

From MPE-3D to SINFONI / VLT

The MUSE / VLT Slicer

Image Slicer - Raw Data

IFUs

IFU Zoo: How to map 3D on 2D

IFUs

Filling Data-cubes

N observations each with n x m *píxels*

Datacube with same equivalent volume Nnm

Narrow-band imaging Fabry-Perot/Fourier Transform Stepped long-slit spectroscopy Integral field spectroscopy

© J. Allington Smith

To first order: all 3D methods are equivalent

same number of Detector pixels = same Data volume

But it is NOT equivalent

- ♦ Efficiency of packing on the CCD → Q_{max}
- Noise issues

***** Separation of spectral versus spatial information:

- e better handle on spectrophotometry
- e But low packing efficiency

Slice = spatial continuity

- Continuous variation
- e High packing efficiency
- But the 2 spatial dimensions are not on a similar ground

Best technique?

→ Slicers but difficult to make

From Sky to Datacubes

We wish to retrieve the full 3D information from an observed astrophysical object

Issues

- e Atmosphere
 - Transparency, PSF, refraction, time variations
- Optical path (telescope/instrument)
 - ø distortions, achromatism, diffraction, ...
- Splitting the field, sampling issues
- e CCD signatures
 - dark current, bias, artefacts, non linearity, irregularities, CTE
- An Inverse problem with knowns and unknowns:
 - e HOW to recover the best signal out of a given exposure
 - e HOW to robustly estimate the quality of the data

How to un-map 2D to 3D ?

- Standard = to 'extract' 2D data into 3D (x,y, λ) 'data-cube'
- Cubes are then resampled to linearize the 3D
- ♦ Initial extraction → extra resampling step
- Very difficult to retain the original sampling during extraction
- Assumption of *smoothly-varying properties* accross a CCD ?

How is the 3D data mapped?

Example: SAURON mask

- e Flexures → reference exposure =
- e Critical blends
- e Sampling of the spectral PSF
- → Detailed optical model:

To know where each x,y, λ lie on the CCD !!

Integrated cross-dispersion profile \mathcal{G} of the geometrical micropupil (solid line) and its fit (dashed line) with three Gaussian functions (dotted lines).

Extracting Different Instruments

Slicer

Lenslet

- Within a slice, CCD pixels are neighbouring in (x,y,λ) no de-blending
- Slices are independent
- No common wavelength axis

- Spatial axes can be arranged arbitrarily
 Fibres may need de-blending
 Wavelength axis is common to all fibres
- Fibres usually treated as independent
- Both spatial and spectral axes re-arranged
- CCD pixels fully decoupled from (x,y,λ)
- Deblending is critical
- Each lens is independent

The Noise issue

- Noise from the instrument
 - Detector noise
 - Read-out noise, shot noise from the dark current
 - Noise introduced during the data processing
 - E.g., due to the finite S/N of calibration exposures
- Noise from the undesired backgrounds
 - Shot noise from the backgrounds will remain even after a perfect subtraction of the undesired background
- Shot noise from the signal itself
- S/N of a dataset = key element for the analysis
 How real/robust are features you will detect / use ?

Propagation of artefacts

Artefact has been:

- spread out more data loss
- * attenuated less likely to be identified

Cosmic Rays

CCD coordinates are decoupled from data-cube coordinates

- Cosmics have high contrast in image planes
- Real features follow smooth/PSF distribution
- But better to do before resampling

ESO 08

Common data reduction steps

The all-in one (magic!) solution ?

- * *Minimise* the number of steps including a resampling
- Associate data analysis tools with data reduction software
 - The "ultimate" solution : to keep working with the detector pixels
 - → real nightmare (and a 3D one!)
 - "less" true for densely-packed fiber systems and image slicers ?

ESO 08

IFU Issues: Atmospheric Refraction

- Atmospheric refraction = image shifts as function of wavelength
- Shifts largest at blue wavelengths
- \blacklozenge Can be corrected during reduction by shifting back each λ plane

Fringing from bad flat fielding

IFU Issues: Spectral Resolution

- Variations in spectral PSF across field
- Need to homogenize before merging
- Measured using twilight sky

Co-Adding Data Cubes

Two approaches:

1. Dithering by non-integer number of spaxels:

- Allows over-sampling, via 'drizzling'
- Resampling introduces correlated noise
- Good for fairly bright sources

2. Dither by integer number of spaxels

- Allows direct 'shift and add' approach
- No resampling:- better error characterisation
- Assumes accurate (sub-pixel) offsetting
- Suitable for 'deep-field' applications

© R. McDermid

IFU evolution

Instrument	Type	N	Ν	Domain	Spaxel	R	AO	Year	Telescope
		Spat	Spec	μm	arcsecond				
TIGER	Lens	572	270	0.45 - 1	0.4	1200		1987	CFHT - 3.6m
ARGUS	Fibres	622	2048	0.3 - 1	0.4	450 - 2500		1997	WHT - 4.2m
MPE-3D	Slicer	256	256	1.48 - 2.41	0.3 - 0.5	1100, 2100	AO	1997	C. Alto - 3.5m / AAT - 3.9m
INTEGRAL	Fibres	205	200	0.45 - 1	0.45 - 2.7	450 - 2200		1997	WHT - 4.2m
SMIRFS	Lens	72	256	1 - 2.5	0.63	300-6000		1997	UKIRT
OASIS	Lens	1200	360	0.45 - 1	0.04 - 0.4	1000 - 2500	PUEO	1998	CFHT - 3.6m
MPFS	Lens+Fibers	256	1024	0.45 - 1	0.5 - 1	500 - 2000		1998	Zelenchuk - 6m
PIFS	Slicer	120	256	1 - 5	0.67	600, 1300		1998	Palomar - 5m
SAURON	Lens	1520	500	0.48 - 0.54	0.27 - 0.94	1600		1999	WHT - 4.2m
Spiral B	Lens	512	500	0.48 - 1	0.7	1150 - 11000		2000	AAT - 3.9m
TEIFU	Lens	1000	1024	0.40 - 1	0.13 - 0.25	2000	NAOMI	2000	WHT - 4.2m
Kyoto 3D	Lens	1000	500	0.36 - 0.9	0.42	1200		2000	Nogayama – 2m
Kyoto 3D	_	_	_	_	0.093	3500		2002	Subaru – 8m
VIMOS	Lens+Fibres	6400	2046	0.27 - 1	0.33 - 0.67	180 - 2520		2001	VLT - 8.2m
FLAMES	Lens+Fibres	308	2048	0.37 - 0.95	0.3 - 0.52	7500-25000		2001	VLT - 8.2m
CIRPASS	Fibres	490	1024	0.85 - 1.8	0.05 - 0.35	3000			Gemini N – 8m
UIST	Slicer	72	1024	1 - 5	0.24	300-6000		2001	UKIRT
GMOS	Lens+Fibres	1500	2048	0.36 - 1.1	0.2	670 - 4400		2001	Gemini N/S - 8.2m
IMACS	Lens+Fibres	1000	1024	0.4 - 0.9	0.2	1800 - 10000		2001	Magellan - 6.5m
PMASS	Lens+Fibres	256	2048	0.35 - 0.9	0.5 - 1	500 - 3000		2002	Calar Alto - 3.5m
OASIS	Lens	1200	360	0.43 - 1	0.09 - 0.42	1100 - 2400	NAOMI	2002	WHT - 4.2m
PPAK	Lens+Fibres	316	2048	0.35 - 0.9	2.7	500 - 3000		2002	Calar Alto - 3.5m
SINFONI	Slicer	1024	2048	1 - 2.5	0.025 - 0.25	2000-4500	AO	2002	VLT - 8.2m
GNIRS	Slicer	1500	1024	1 - 5.5	0.04 - 0.15	6000		2003	Gemini S - 8.2m
SNIFS	Lens	225	2048	0.32 - 1	0.6	1500		2004	UH - 2.2m
NIFS	Lens	1000	1024	0.95 - 2.42	0.1	5000	Altair	2005	Gemini N - 8m
OSIRIS	Lens	1000 - 2500	4096	1 - 2.5	0.02 - 0.1	3800	AO	2008	Keck - 10m
VIRUS	Lens+Fibres	247x132	4000	0.34 - 0.57	1	1000		2010	HET - 9.2m
KMOS	Slicer	24x196	2000	1 - 2.5	0.2	3500		2010	VLT - 8.2m
MUSE	Slicer	90000	4096	0.45 - 0.9	0.05 - 0.2	3000	MCAO	2013	VLT - 8.2m

IFU papers

© R. Bacon

IFU Papers

Citations

IFU (biased) evolution

Name	Year	N spatial	N spectral	N total
TIGER	1987	572	270	154,440
OASIS	1997	1,200	360	432,000
SAURON	1999	1,577	540	851,580
VIMOS	2002	6,400	550	3,520,000
MUSE	2008	90,000	4,096	368,640,000

Data reduction and analysis challenges

Data complexity:

- @ 2D mapping of 3D data
- Data characteristics: noise and systematics

Lack of robust tools:

- e Each instrument has different characteristics
- Observing strategy can condition the data reduction
- e Lack of manpower
- Community ?
 - Success ! : Euro3D
 - Failure : Euro3D

Data reduction and analysis challenges

Data volume, for example MUSE:
One exposure is > 1Gb (360 million resolved elements)
One night = a few 100 Gb of raw data
One 3D deep field will take 10 nights (> 1 Tb...)

Such instruments and applications require:

- A parallel data-reduction pipeline
- Control the systematic to reach the required limiting magnitude
- Optimal summation of 100 data cubes obtained under different sky conditions
- **@** Mining the final data cube to search for Ly α emission

