Combining Lensing and Dynamics for SLACS Lenses

Oliver Czoske Kapteyn Institute, Groningen, NL

"Gas and Stars in Galaxies – A Multi-Wavelength 3D Perspective" Garching, 12 June 2008

Collaborators

Léon Koopmans (Kapteyn) Matteo Barnabè (Kapteyn) Tommaso Treu (UCSB) Adam Bolton (IfA, Hawai'i)

SLACS IFS

Motivation

Advantages of gravitational lensing:

- sensitive to *all* kinds of matter (DM + stars + gas + ...)
- insensitive to dynamic state of matter
- robust and model-independent estimate of total mass contained within Einstein ring

But: model degeneracies! These can be broken by combination with, e.g., kinematic information. Lenses Structures and Dynamics

(L. Koopmans, T. Treu)

- detection of DM halos at high significance
- inner total mass profiles close to isothermal

• *etc...*

(MG2016, Léon Koopmans)

The project

Sample:

 $\{17 \text{ lens systems}\} \subset \text{SLACS} \subset \text{SDSS LRG and MAIN (quiescent)}$ Observations:

Large programme with VIMOS/IFU Data reduction: VIPGI Kinematic analysis: Template fitting in pixel space $\rightarrow v(x,y), \sigma(x,y)$

SLACS IFS

Reduction Results: SDSS J2321

SLACS IFS

[OII] narrow band image

We can recover the structure of the lensed source by extracting an [O II] intensity image:

VIMOS/IFU, narrow-band [OII] – continuum

HST/ACS, lens subtracted

CAULDRON

source reconstruction & DF reconstruction

Barnabè & Koopmans (2007)

J2321–097: Results

Lensing

Dynamics

adopted model: Power Law $\rho(R, z) \propto (R^2 + z^2/q^2)^{-\gamma/2}$

- inclination: $i = 65^{\circ} \pm 10^{\circ}$
 - slope: $\gamma = 2.04 \pm 0.1$
- axis ration: $q = 0.73 \pm 0.08$
- "lens strength": $\alpha_0 = 0.47 \pm 0.01$

Summary

Furthermore:

- Stellar population modelling (with Scott Trager) \longrightarrow stellar M/L, disentangle stellar and dark matter contributions
- place systems in $(v/\sigma, \epsilon)$ diagram, inclination correction from detailed modelling

For further information, please consult our papers:

- SLACS: e.g. Bolton et al. (2008), arXiv:0805.1931
- CAULDRON: Barnabè & Koopmans (2007), ApJ 666, 726
- First IFU results: Czoske et al. (2008), MNRAS 384, 987

Contents

1

- 2 Collaborators
- 3 SLACS IFS
- 4 The project
- 5 SLACS IFS
- 6 SLACS IFS
- 7 CAULDRON
- 8 J2321-097: Results
- 9 Summary
- 10 Contents

Motivation

Reduction Results: SDSS J2321 [OII] narrow band image