PWV with VISIR

Outline

Measuring the amount of precipitable water vapour with VISIR

Alain Smette Hannes Horst Julio Navarrete

ESO Chile

ESO Calibration Workshop 23-26 January 2007

(日) (日) (日) (日) (日) (日) (日)

・ロト・御ト・モト・モー のへで

Water

PWV with VISIR

Water vapour

Water

Measuring wate vapour

VISIR

Method

Results

Comparison with photometric data

Conclusions

Water:

- one of the main constituents of the atmosphere:
- mainly found in the lower layers
- can be found
 - in condensed form (important for optical and NIR):

- liquid, as droplets in most clouds
- solid, as small ice crystals in cirrus clouds
- as water vapour (important for NIR and MIR).

Water vapour

Water

Measuring wate vapour

VISIR

Method Results

Comparison with photometric data

Conclusions

Figure: Atmospheric opacity

http://www-atm.physics.ox.ac.uk/group/mipas/ac

What?

PWV with VISIR

Water vapour

Water

Measuring water vapour

VISIR

Method

Comparison with photometric data

Conclusions

Usual quantity is the Precipitable Water Vapour (PWV):

- amount of water vapour in the atmospheric column above the observatory
- equivalent to the amount of liquid precipitation that would result if all the water vapour in the column is condensed (in mm)

Why?

PWV with VISIR

Water vapour

Water

Measuring water vapour

VISIR

Method Results

Comparison with photometric data

Conclusions

- in the NIR (L, M, also in K!): zero-point
- in the MIR:
 - sensitivity, conversion factor
 - passband dependent
 - observations of standard stars is time expensive
- in the sub-mm: *crucial* to correct variations of the path length in the atmosphere

How and when? 1/3: from above

PWV with VISIR

Water vapour

Water

Measuring water vapour

VISIR

Method Results

Comparison with photometric data

Conclusions

• at ESO (Marc Sarazin, Andre Erasmus): http://www.eso.org/gen-fac/pubs/astclim/ forecast/meteo/ERASMUS/l_p_f0.html

based on

- the Upper Tropospheric Humidity for the middle and upper troposphere (layer between 700 mb and 300 mb (approx. 3000 to 9500 m), determined from 6.7μm images
- surface relative humidity value derived from the observations of surface relative humidity at the observatory in the 24 hours preceding the forecast
- satellite images every 3 h + European Centre for Medium-Range Weather Forecasting model

How and when? 2/3: from below

PWV with VISIR

Water vapour

Water

Measuring water vapour

VISIR

Method

Results

Comparison with photometric data

Conclusions

• radiometers (APEX, ALMA):

• measurement of a water emission line (e.g.: 183 GHz)

- requires accurate atmospheric model (pressure, temperature)
- high-accuracy ($\approx 10^{-6}$ mm)
- real-time
- expensive

sky dips (e.g.: SCUBA)

- simple
- expensive in execution time
- absorption lines in stellar spectra (CRIRES SV, P24)

- some lines are T-insensitive
- expensive in execution time

How and when? 3/3: from below

PWV with VISIR

Water vapour

Water

Measuring water vapour

VISIR

Method

Results

Comparison with photometric data

Conclusions

• VISIR medium-resolution spectroscopy

- 10 s exposure, 1 min execution
- near real time
- sufficient precision
- requires decent atmospheric model (pressure, temperature)

PWV determination from VISIR spectra

PWV with VISIR

Water vapour

Water Measuring wate vapour

VISIR

Method

Results Comparison with photometric data

Conclusions

- VISIR sky spectra (MR, 19.5 μ m (Q3), 0.4" slit) ;
- 10 s exposure time; \approx 1 min execution time
- χ^2 fit using RFM, modifying the H2O concentration by a constant factor in each layer

• IDL interface (H2Ocalc) to RFM

RFM: Radiative Forward Model

PWV with VISIR

Water vapour

Water Measuring wa vapour

VISIR

Method

Results Comparison with photometric data

Conclusions

 RFM: Line-by-line modeling Fortran code, developped by Anu Dudhia (Oxford) to analyse data from MIPAS on-board ENVISAT

HITRAN database:

- HITRAN'2004 Database (Version 12.0)
- 1,734,469 spectral lines for 37 different molecules, including the atom O (singlet) and the ion NO+.
- Atmospheric profile:
 - Lower and upper altitudes of (possibly arbitrarily) layers (typically 50)

- Mean pressure in each layer
- Mean temperature in each layer
- Concentration of H20, CO2, O3, etc... in each layer

Predicted spectra

Figure: Predicted MR spectrum

(日)

Observed spectra

Figure: Examples of measured and fitted spectra

Observed spectra

Figure: Examples of measured and fitted spectra

Observed spectra

Figure: Examples of measured and fitted spectra

VISIR vs satellite

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

VISIR vs satellite

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへで

VISIR vs satellite

Figure: PAH1

Figure: PAH1

æ

Figure: PAH2

Figure: Q2

Conclusions

PWV with VISIR

Water vapour

Water Measuring wate vapour

VISIF

Method Results Comparison

Conclusions

- Measuring the amount of PWV with VISIR is now easy
- Preferable than to rely on satellite data
- Allows to easily estimate its effect on the conversion factor and sensitivity with a reasonable accuracy
- Better accuracy could be achieved by using a more appropriate atmospheric profile
- User constraint? (spectroscopy?)
- Values should be available on the web
- Method to be tested with ISAAC, SINFONI, CRIRES spectra

(日) (日) (日) (日) (日) (日) (日)