Multi Unit Spectroscopic Explorer

MUSE: A Second-Generation IFU for the VLT

Potsdam

Toulouse

Göttingen

NSTITUT FÜR

ASTROPHYSIK GÖTTINGEN

Richard McDermid & MUSE collaboration

ESO Calibration Workshop

Survey Spectroscopy: Classical Approach

- Imaging + MOS
 - 1: Imaging
 - 2: Selection
 - 3: Spectroscopy

Prerequisite

- To see objects
- *To select objects*

Best for

- Precise scientific question \Rightarrow efficient selection
- Minimized spectrographic detector cost

ESO - Göttingen - Leiden - Lyon - Potsdam - Toulouse - Zurich

Survey Spectroscopy: New Approach

Get everything!

MOSE

- Eliminates pre-imaging
- Eliminates pre-selection
- Observe only once
- Large discovery space

ESO - Gottingen - Leiden - Lyon - Potsdam - Toulouse - Zurich

Richard McDermid (Leiden)

Survey Spectroscopy: New Approach

IFU can give best of both worlds:

IMOSE

 Imaging: wide field of view and high spatial resolution
 Spectroscopy: wide, simultaneous spectral range and high resolving power

ESO - Gottingen - Leiden - Lyon - Potsdam - Toulouse - Zurich

Richard McDermid (Leiden)

MUSE-WFM: The Big Step

		4096 pixels
Spectral range (simultaneous)	0.465-0.93 µm	
Resolving power	2000@0.46 μm	370 10 ⁶ pixels
	4000@0.93 μm	
Wide Field Mode (WFM)		90,000 spaxels
Field of view	1x1 arcmin ²	
Spatial sampling	0.2x0.2 arcsec ²	
Spatial resolution (FWHM)	0.3-0.4 arcsec	
Gain in ensquared energy within	2	\mathcal{AO}
one pixel with respect to seeing		
Condition of operation with AO	70%-ile	Laser guide stars
Sky coverage with AO	70% at Galactic Pole	
Limiting magnitude in 80h	I _{AB} = 25.0 (R=3500)	High throughput
Secure Castoria de	I _{AB} = 26.7 (R=180)	
Limiting Flux in 80h	3.9 10 ⁻¹⁹ erg.s ⁻¹ .cm ⁻²	

ESO - Gottingen - Leiden - Lyon - Potsdam - Toulouse - Zurich Richard McDermid (Leiden)

Stability

MUSE

MUSE 3D Deep Field: The Goal

Comprehensive study of the *faint* galaxy population over a wide range of redshift

- *Wide range of redshift:*
 - Lyα detectable z=2.8-6.7
 - Volume = 2.2 10⁶ Mpc³ ("Shallow Field" survey - 200 arcmin²)
- Faint:

p.6

- Progenitor of MW type galaxies up to z=6.7
- Comprehensive:
 - Statistics (luminosity function, clustering)
 - Star formation history
 - Diffuse ionized gas
 - Interaction with IGM
 - + *more*

continuum

One deep field (80 hours) > 400 galaxies

ESO - Gottingen - Leiden - Lyon - Potsdam - Toulouse - Zurich Richard McDermid (Leiden)

Effect of Spatial Resolution

p.7

Seeing limited observations in poor seeing conditions (1.1") **260** gal.arcmin⁻² in total, **75** gal.arcmin⁻² in z=[4-6.7]ESO - Gattingen - Leiden - Lyon - Potsdam - Toulouse - Zurich

Richard McDermid (Leiden)

6.7

Effect of Spatial Resolution

AO observations in good seeing conditions (0.7") 420 gal.arcmin² in total, 132 gal.arcmin² in z=[4-6.7] ESO - Gottingen - Leiden - Lyon - Potsdam - Toulouse - Zurich Richard McDermid (Leiden)

3D Deep Field: Simultaneity and Serendipity

High z $Ly \alpha$ emitters Reionization Intermediate z galaxies Fluorescent emission Feedback processes Gravitational lensing Spatially resolved spectroscopy Late forming pop III Active galactic nuclei Merger rate Development of dark halo

All at once + the unknown !!

ESO - Göttingen - Leiden - Lyon - Potsdam - Toulouse - Zurich Richard McDermid (Leiden)

Stellar Jets in YSO

MUSE'

Broad line coverage + high spatial resolution + FOVOptical emission $-\mathcal{H}\beta$, [OIII], [\mathcal{N} I], [OI], [\mathcal{N} II], $\mathcal{H}\alpha$, [SII], [CaII], [FeII] Line fluxes and velocities Single flux calibration Magnetic field, shock conditions, jet density, origin of jet knots, low-velocity halo...

ESO - Gottingen - Leiden - Lyon - Potsdam - Toulouse - Zurich

.5 arcmin

Stellar Populations: Resolved Spectroscopy

• Pre-ELT science

p.11

• GAIA complementarity

MUSE

Survey of nearby disk galaxies – 25 exposures of 4 hour: 5x5 arcmin²

Search for — Massive stars

- 1000/galaxy
- Planetary nebulae
 - ~100/galaxy
- HII regions
- Rare objects
 - Exotic stars (LBV, B[e])
 - SNR, novae, ultra-luminous Xray source
- Diffuse ISM

ESO - Göttingen - Leiden - Lyon - Potsdam - Toulouse - Zurich Richard McDermid (Leiden)

Nearby Galaxies

Sub-kiloparsec scale at 100 Mpc distance (Coma) Extend current studies (e.g. SAURON = Virgo) to different environments and large samples

4hr SAURON + 1hr OASIS = < 1hr MUSE ESO - Gottingen - Leiden - Lyon - Potsdam - Toulouse - Zurich Richard McDermid (Leiden)

MOSE

MUSE-Narrow Field Mode: Getting More from MUSE

Changing spatial scale

MOSE

- $0.2 \Longrightarrow 0.025 \text{ arcsec}$
- \mathcal{FOV} : 7.5 χ 7.5 arcsec²
- Changing AO optimisation & configuration
- Spatial resolution
 - Diffraction limited
 - Strehl > 10% @ 0.65 μm

Sinfoni

p.13

- *0.025 arcsec*
- 0.8 χ 0.8 arcsec²
- 1-2.5 μm
- Strehl 30%@K

SINFONI 2.2µт MUSE 0.85µт MUSE 0.65µт

ESO - Gottingen - Leiden - Lyon - Potsdam - Toulouse - Zurich

Richard McDermid (Leiden)

Planetary Atmospheres

Temporal changes on Uranus:

- 300 km/pixel
- Global monitoring
- *3D atmospheric structure:*
 - CO, C2H2, NH3, HC3N,
 CH4

ESO - Gottingen - Leiden - Lyon - Potsdam - Toulouse - Zurich Richard McDermid (Leiden)

AGN environment

MUSE

Circum-nuclear gas disk Emission cone Stellar populations

p.15 ESO - Göttingen - Leiden - Lyon - Potsdam - Toulouse - Zurich Richard McDermid (Leiden)

Schedule/Milestones

Manufacturing Assembly Integration and Test Phase

2009	2010	2011	2012
Kick Off		Acceptance Europe 7/11	Acceptance Chile 12/12

ESO - Gottingen - Leiden - Lyon - Potsdam - Toulouse - Zurich Richard McDermid (Leiden)

MUSE

Instrument Description

Richard McDermid (Leiden)

p.17

MUSE Challenge & Innovation

Challenge

- Achieve high throughput
- Achieve high spatial resolution
- Achieve high optical quality
- <u>And</u> keep cost under control

Innovation

- Slicer: advanced concept, diamond machining
- Spectrograph: modular concept suited to serial industrial production
- Grating: VPH with broad response
- AO: ground layer correction

ESO - Gottingen - Leiden - Lyon - Potsdam - Toulouse - Zurich

Richard McDermid (Leiden)

GALACSI AO System

GALACSI = Ground Atmospheric Layer Adaptive Corrector for Spectroscopic Imaging

 Multiple guide sources increase sky area sampled
 Concentrate on ground layer to expand corrected field beyond isoplanatic patch

p.20

 $\mathcal{VLTM1}$

ESO - Göttingen - Leiden - Lyon - Potsdam - Toulouse - Zurich Richard McDermid (Leiden)

GALACSI WFM

MUSE

Fore Optics

Derotate Enlarge Anamorphose Na Notch Filter Blue cutoff Filter Light Stop ADC (NFM) IR Dichroic (NFM)

ESO - Göttingen - Leiden - Lyon - Potsdam - Toulouse - Zurich Richard McDermid (Leiden)

MUSE

MUSE WFM Fine Guiding System

p.23

Correct for relative motions between GALACSI and Nasmyth Platform:

- Thermal drift
- De-rotator wobble
- Use stars in the 4 outer 'bananas'
- Cross-correlation at 1 0.1 Hz

ESO - Gattingen - Leiden - Lyon - Potsdam - Toulouse - Zurich

Richard McDermid (Leiden)

MUSE NFM Fine Guiding System

p.24

 NFM uses on-axis guiding to maximise performance
 Tip/Tilt + Focus on the object using WFS IR 1-1.7 µm

ESO - Göttingen - Leiden - Lyon - Potsdam - Toulouse - Zurich Richard McDermid (Leiden)

Field Splitter

MUSE

p.25

Split the FoV in 24 sub-fields Shutter

ESO - Gottingen - Leiden - Lyon - Potsdam - Toulouse - Zurich Richard McDermid (Leiden)

Relay Optics

ESO - Gottingen - Leiden - Lyon - Potsdam - Toulouse - Zurich Richard McDermid (Leiden)

MUSE

TMUSE

Image Slicer

Image Dissector Array

- 4χ12 thin off-axis spherical mirrors
 - 33x0.9 mm

p.27

- Sharp edge < 10 μm
- Tilt accuracy < 1 arcmin

ESO - Göttingen - Leiden - Lyon - Potsdam - Toulouse - Zurich Richard McDermid (Leiden)

Image Slicer

Focusing Mirror Array – 4x12 off-axis spherical mirrors 6x2 mm

p.28

ESO - Göttingen - Leiden - Lyon - Potsdam - Toulouse - Zurich Richard McDermid (Leiden)

p.30

ESO - Gottingen - Leiden - Lyon - Potsdam - Toulouse - Zurich Richard McDermid (Leiden)

MUSE

Operations

3 operating modes:

1) No AO WFM:
Point and shoot
2) AO WFM:
AO setup

- Shoot
- 3) AO NFM:
 - AO setup
 - Fine centering
 - Shoot

p.31

ESO - Gottingen - Leiden - Lyon - Potsdam - Toulouse - Zurich

Richard McDermid (Leiden)

Calibrations:

- <u>No night calibrations</u> foreseen, except for spectrophotometric standard stars
- Twilight sky flats
- Daytime internal calibrations
 - Flats, Arcs, Bias, ...

MUSE Data: Challenges

Volume:

- One exposure = 90,000 spectra on $4\chi 10^8$ pixels -> 100s Gb/night of raw data
 - Transfer to archive/user
 - Storage/backup
- Need real-time quality checking & image reconstruction
 - Too many pixels for visual inspection
 - Need automatic data quality assessment
- 24 separate images to reduce and combine into final data-cube
 - Parallel image processing
 - Tracking associated files from one exposure database
 - Common calibrations: flat-field, astronometry, PSF...

ESO - Göttingen - Leiden - Lyon - Potsdam - Toulouse - Zurich

MUSE Data: Challenges

Calibration:

- Full octave domain:
 - Arc line coverage
 - Uniform continuum source
- Astrometry / field distortions
 - Large field distortions become important
 - Thermal variations?
 - Calibrate with pinhole mask or on-sky
- Coupling with AO:
 - PSF variations
 - Acquisition
 - Common calibration
- Reliance on day calibrations
 - Regular stability monitoring

ESO - Gottingen - Leiden - Lyon - Potsdam - Toulouse - Zurich

Richard McDermid (Leiden)

MUSE Data: Challenges

Analysis:

- Mosaicing "blank" fields
 - No common reference sources
 - Use information from NGS-WFS or fine-guiding system
- PSF varies with field, wavelength, time:
 - PSF reconstruction crucial for some cases (extended sources)
 - Homogenize before combining exposures
 - Deconvolution in 3D?
- *New/maturing analysis techniques:*
 - Crowded field spectroscopy
 - Spectral background subtraction for faint emission lines
 - Automated faint source detection -> reliable error spectra

ESO - Gottingen - Leiden - Lyon - Potsdam - Toulouse - Zurich

Richard McDermid (Leiden)

"Hmmm.... I think there is a problem on pixel 192,379,482. You know, the one in spectrum 78,269? Maybe we should retake the OB?"

Poster P33:

"The MUSE Data Reduction Pipeline – Plans and Status" Peter Weilbacher et al.

ESO - Göttingen - Leiden - Lyon - Potsdam - Toulouse - Zurich Richard McDermid (Leiden)

P**

MUSE

Spectrograph

Cheap Glasses Axial chromatism corrected by CCD and field lens window tilt Image Quality

 — 85% ensquared energy within 15χ30 μm (30χ30 μm at 0.465 μm)

Athermal design

 $- dZ/DT = 0.04 \mu m/^{\circ}C$

WAVELENGTH-> FIELD				
0,00, 0),00	ММ		
17.00, (0.00	ММ		
34,00, (0,00	MM		
51,00, (0,00	MM		
66.90, 1	0.00	MM		
34,00, !	5,57	MM		
66,90, !	5,57	MM		
66.90, -	5.57	MM		
34,00, -	5,57	MM		
0,00,5	5.57	ММ		
0.00, -!	5.57	MM		

SURFACE: IMA

0.465 µm

0.93 µm

ESO - Gottingen - Leiden - Lyon - Potsdam - Toulouse - Zurich Richard McDermid (Leiden)

ESO - Gottingen - Leiden - Lyon - Potsdam - Toulouse - Zurich Richard McDermid (Leiden)

p.41

Maintenance

No moving part in the 24 IFUs
 Few moving parts in the Fore Optics
 Filter

- Derotator
- Shutter
- ADC in NFM
- NFM/WFM switch
- Imaging mirror

ESO - Gottingen - Leiden - Lyon - Potsdam - Toulouse - Zurich Richard McDermid (Leiden)

The MUSE Collaboration

Roland Bacon (PI), Bauer S., Boehm P., Boudon D., Brau-Nogué S., Caillier P., Capoani L., Carollo C.M., Champavert N., Contini T., Daguisé E., Dallé D., Delabre B., Devriendt J., Dreizler S., Dubois J., Dupieux M., Dupin J.P., Emsellem E., Ferruit P., Francois M., Franx M., Gallou G., Gerssen J., Guiderdoni B., Hahn T., Hofmann D., Jarno A., Kelz A., Koehler C., Kollatschny W., Kosmalski J., Laurent F., Lilly S.J., Lizon J.L, Loupias M., Manescau A., McDermid R.M., Monstein C., Nicklas H., Parès L., Pasquini L., Pécontal-Rousset A., Pécontal E., Pello R., Petit C., Picat J-P., Popow E., Quirrenbach A., Reiss R., Renault E., Roth M., Schaye J., Soucail G., Steinmetz M., Stroebele S., Stuik R., Weilbacher P., Wisotzki L., Wozniak H., de Zeeuw P.T.

ESO - Gottingen - Leiden - Lyon - Potsdam - Toulouse - Zurich

GALACSI Opto-Mechanics

MUSE

p.44

ESO - Göttingen - Leiden - Lyon - Potsdam - Toulouse - Zurich Richard McDermid (Leiden)

MUSE on Astronomy Roadmap

ESO - Gottingen - Leiden - Lyon - Potsdam - Toulouse - Zurich Richard McDermid (Leiden)

租MUSE