High resolution spectrographs Instrument Operation Team overview

HARPS, UVES, FLAMES, GIRAFFE, FEROS, CES, EMMI (echelle), CRIRES, VISIR

Presented by: Gaspare Lo Curto

Team: P. Francois, C. Ledoux, G. Lo Curto, C. Melo, E. Pompei, A. Smette, L. Vanzi

Instrument summary (optical): HARPS/EGGS: 1"/1.4" fibre, x dispersed, fixed config. CES: 2" fibre, scanning spectrograph. FEROS: 2" fibre, cross dispersed, fixed configuration. EMMI-echelle: slit, (cross) dispersed, order sort., 2-D. UVES (FLAMES): slit+fibre, cross dispersed, two arms **GIRAFFE:** fibre, scanning spectrograph 23-26/01/2007 - ESO Instrument Calibration Workshop

Instrument summary (infrared):

CRIRES (NIR): 46" slit, 2-D scanning spectrograph.

VISIR (MIR): 32" slit, 2-D scanning spectrograph, also with a cross dispersed mode.

Instrument summary (science):

	Instrument	Science
2	HARPS	79% planets, 16% asteros., 5% others (atm., ISM)
	FEROS	46% RV, 24% Abundances, 30% others
	CES	Line profiles, line splitting (Zeeman), ISM
	EMMI-ech.	5% of EMMI scheduled time: ~ 90% stellar atm. and PNs, 5% solar system, 5% others.
	UVES+ UVES-FLAMES	IGM, ISM, circum. \sim 30%, chemical abund. \sim 30%, RV(I ₂) \sim 10%, others \sim 30%.
	FLAMES-GIRAFFE	~85% stellar pop., ~5% planets, ~ 5% kinematic of galaxies, 5% others.
	CRIRES	50% planet/star form., 38% stars, 4% ISM, 4% comets, 4% galactic center
	VISIR	Star formation, obscured sources, UCHII, solar sys.

Instrument summary (pipelines):

All HR spectrographs are equipped with online pipelines, which, apart from performing the reduction of the data, supply the basic quality control parameters

CES and EMMI-echelle only have "quick-look" scripts (SciOps) for online quality control.

HARPS pipeline is developed and maintained by the consortium and apart from delivering science products performs online QC.

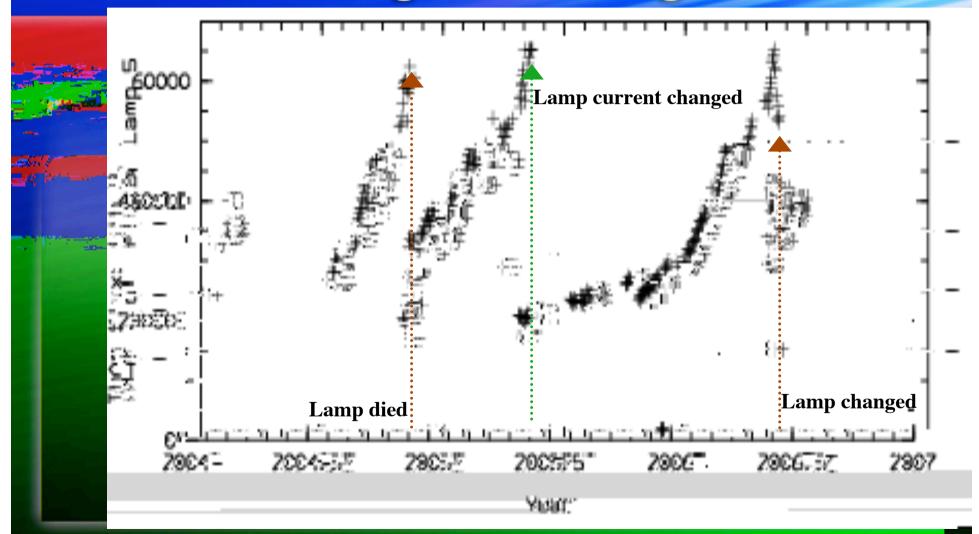
Calibration tasks

Bias Dark Order localization Flat field Wavelength solution Absorption cell calibrations Flux standards Telluric standards Radial Velocity standards

Calibration plan - HARPS

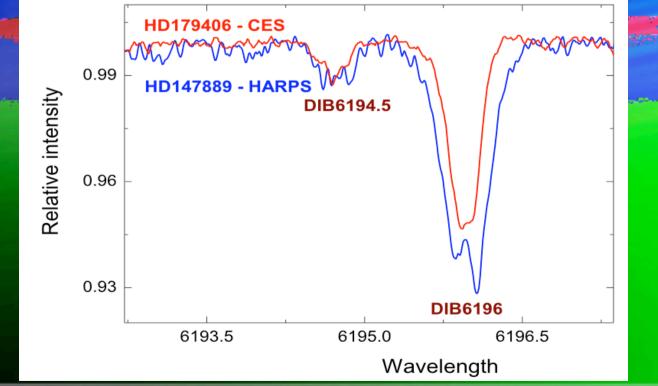
	Calibration	N	Freq. (1/day)	Purpose	
	Bias	1	1	Control bias	
-	Dark	3	30	Control dark	
	Order definition	2	1	Pipeline calib.: order definition	e alerer i
	Flat	5	1	Pipeline calib: flat fielding	
	Wavelength solution	2	1	Pipeline calib.: wavelength sol.	
	Solar spectrum	1	 ~ 60, when weather allows, on calib. nights 	Response to solar spectrum	
	Flux standard	3	~ 30, when weather allows, on calib. nights	Instrument response & eff.	

Calibration plan - UVES


UVES Science Data Calibration Plan (per instrument and detector setting)					
Calibration	number	frequency [1/days]	purpose		
Flatfields	5	1 / 3	creation of master flats		
attached Flatfields	n	o.r.	high-precision flatfielding		
Wavelength	1	1 / 1	dispersion solution, resolving power		
attached Wavelength	n	o.r.	high-precision wavelength calibration		
Order Definition	1	1 / 3	pipeline calibration: order definition		
Format Check	1	1 / 3	pipeline calibration: physical model		
Bias	5	1 / 7	creation of master biases		
Dark	3	1 / 30	creation of master darks		
Flux Standard	1	1 / 1	response correction, flux calibration		
Telluric Standard	n	o.r.	removal of telluric spectrum		
Radial Velocity Std.	n	o.r.	absolute radial velocity calibration		
Iodine Cell Flatfields ¹	5	1 / 1	master flats for IP reconstruction		

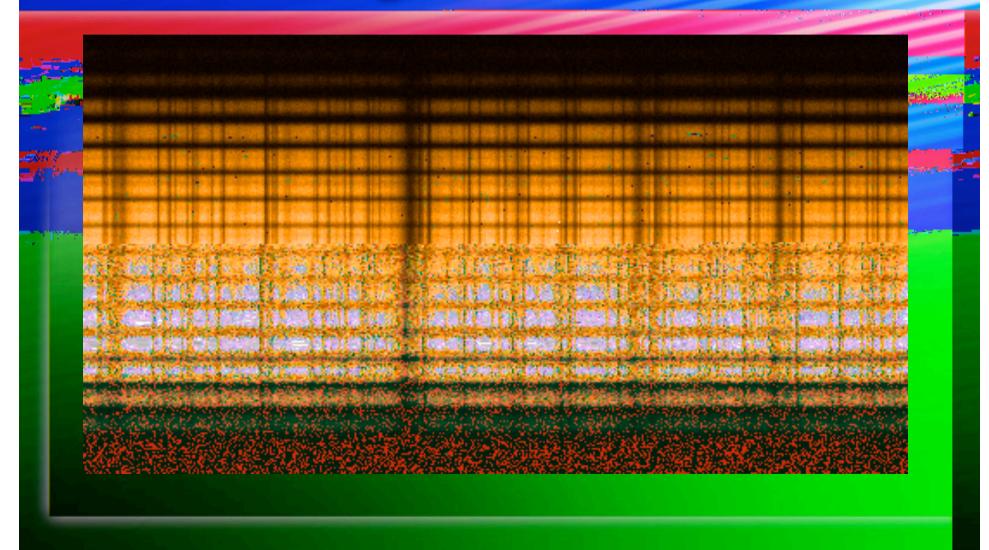
¹ if iodine cell was used

o.r. = on request only, corresponding OBs to be provided by user


n = number to be defined by user

Monitoring & trending

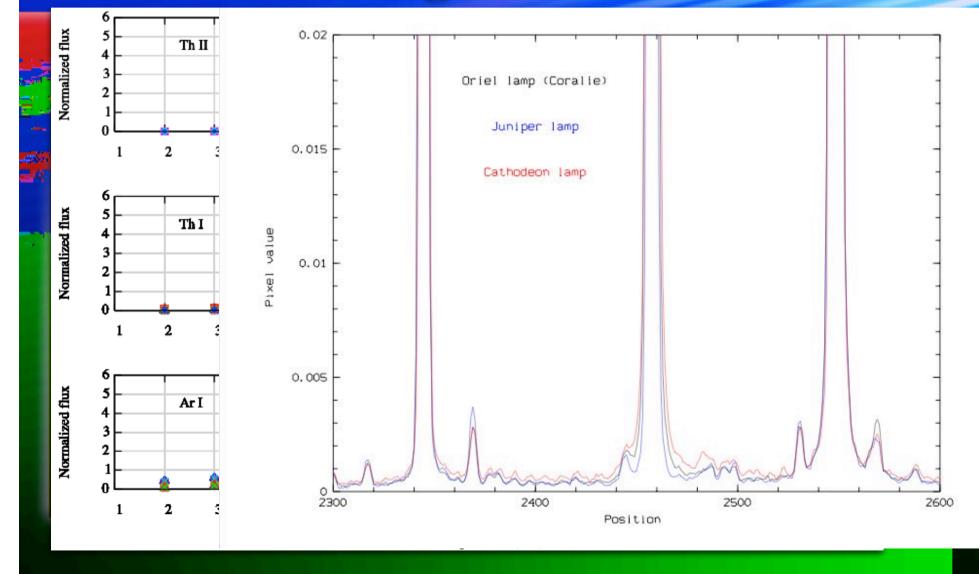
Flat fielding


Need very high signal to noise for specific applications (DIB, extra-solar planets atmospheres ?)

HARPS S/N: ~ 800 - 1200

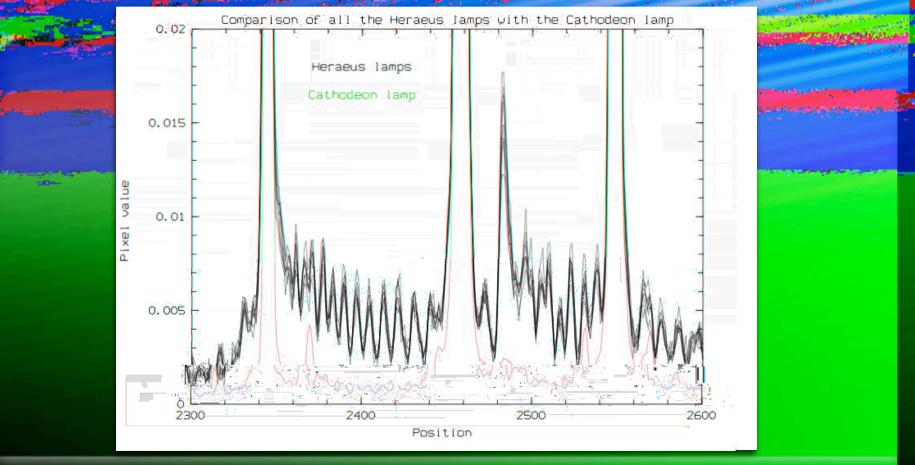
> Flat field: 50 frames of 5s each (S/N~2000)

Flat fielding



Wavelength calibration

 Critical for high precision radial velocity determination (RV "content" of one pixel is ~ 900m/s for HARPS and UVES).


 Troublesome at some wavelengths (NIR, MIR) for lack of lines from an adequate calibrator.

Wavelength calibration

Wavelength calibration

Choice of source is critical

Wavelength calibration (HARPS, FEROS, FLAMES)

HARPS FEROS and FLAMES (coupled with both UVES or GIRAFFE) make use of the method of simultaneous calibration with ThAr alamps to correct for variations of the Instrument Response Function (IRF) due to temperature or pressure changes within the spectrograph. RV accuracy better than 1m/s has been reached with this method (HARPS).

Wavelength calibration (EMIMI echelle)

Exposure times for the arc in echelle mode is 30 minutes at minimum. It takes up to 8 hours blueward of 500nm (with ech. 14 and grism 3). An integrating

Wavelength calibration (CRIRES - NER)

There is not a single calibration source. Depending from the wavelength and the density of lines, the most appropriate source is chosen. An effort is being made to increase the number of identified Th lines (ESO-NIST).

950nm -> 2000nm ThAr lines

2000nm -> 4000nm N₂O absortpion cell

4000nm -> 5400nm Sky lines

Wavelength calibration (VISIR - MIR)

 Wavelength calibration: sky lines (comparison with atmospheric models)
 Movable grating, i.e. needs to calibrate each time it is used

 Problem: the grating moves during the exposure due to the limited accuracy of the scanner. Solutions: more accurate sensor or pipeline to correct with sky lines on each frame (before coaddition).

Fringing

Fringing is an issue for UVES, CES (~ 30% redward of 650nm) and VISIR.

For UVES and CES FF exposures attached immediately before or after the science exposure correct well the effect (~5% residual fringing).

For VISIR fringing is corrected by divison of the extracted spectrum by the STD spectrum.

Flux calibration

 Spectro-photometric standards are part of the calibration plan for the optical and the IR spectrographs.

 In the MIR the most accurate calibration is achieved via the normalization to the IRAS photometric fluxes (Cohen et al. 1999, AJ 117, 1864).

Telluric standards

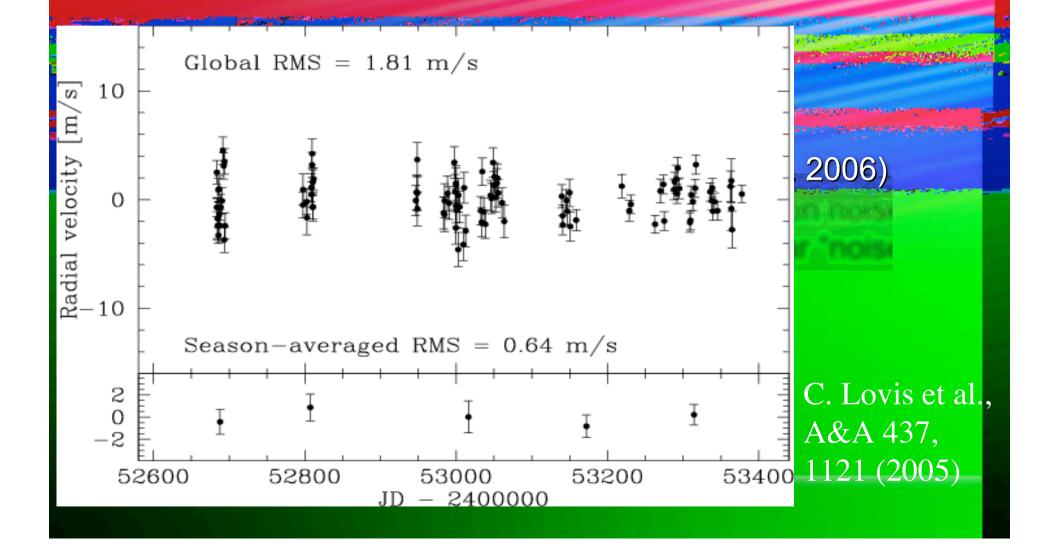
HARPS: ignored, range 390nm-690nm.

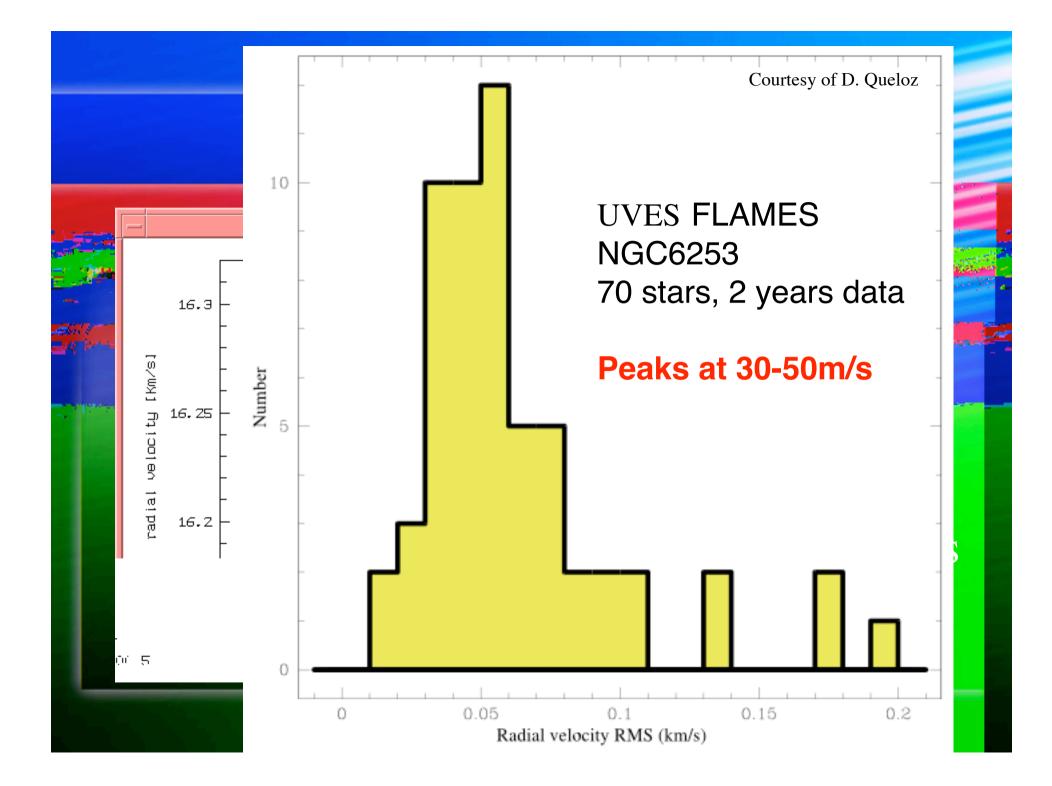
 For the other spectrographs telluric standards are not part of the calibration plan and are left to the users to request (although spectro-photometric standards in VISIR at low resolution mode have mostly the role of telluric).

Absorption cells

Two uses:

wavelength calibration (N₂O, CRIRES)
 IRF tracking (for accurate RV: CRIRES, UVES with I₂)


Formerly I₂ cells were also used in HARPS and CES for planet searches.


Radial velocity standards

• HARPS: do they exist ?

 Others: use Coralie (accurate to ~ 5m/s) or Elodie (accurate to ~ 10m/s) standards.

Radial velocity accuracy (the HARPS case)

Conclusions

 Standard calibration plans suffice for most of the applications.

 Standard calibration plans allow to reach the top RV accuracies achievable for the instruments.

 Difficulty of a precise wavelength calibration is a common issue of several high resolution spectrographs.

Still, we have a dream...

The dream...

An alternative wavelentgh calibration source satisfying the requirement of extreme stability and high density of spectral features from the optical to the IR wavelength ranges.

Instrument pipelines (HARPS):

The HARPS pipeline is a "living being", going towards several steps of evolution.
A reduction machine is installed in Garching to re-reduce all archived data anytime there is a new release of the software.
The idea is not to "leave behind" the general users, but rather to have them benefit from the experience accumulated.

Calibration plan - FEROS

	Calibration	number	frequency [1/days]	purpose
5	Internal Flatfields	10	1/1	creation of master flats
	attached Flatfields	n	o.r.	high-precision flatfielding
ر دهه	Dome Flatfields	n	o.r	Fringe correction in red orders
	Internal Wavelength	12	1/1	dispersion solution, resolving power
	attached Wavelength	n	o.r.	high-precision wavelength calibration
	Bias	5	1/1	creation of master biases
	Dark	1	1 / 10	creation of master darks
	Flux Standard	n	o.r.	response correction, flux calibration
	Telluric Standard	n	o.r.	removal of telluric spectrum
	Radial Velocity Std.	n	o.r.	absolute radial velocity calibration

o.r. = on request only, corresponding OBs to be provided by user

n = number to be defined by user

Calibration plan - CES

	Calibration	Ν	Freq. (1/day)	Purpose	
2 1 0	Bias	5	1	Bias calibration	
	Dark	3	1/run	Dark calibration	
	Flat/order def.	5	1* wavelength change*X	flat fielding	
	Wavelength solution	1	1* wavelength change*X	wavelength sol.	
	Telluric	1	1, when obs. at λ >650nm	Telluric removal	
	Flux standard	3	~ 90, when weather allows, on calib. nights	Instrument response & eff.	

X < 4: whenever the spectrum drift more than 0.2 pixels

Calibration plan - EMIMI echelle

	Calibration	Ν	Freq. (1/day)	Purpose	
	Bias	5	1	Bias calibration	
1987 A.	Flat	3/setup	1	flat fielding	
	Wavelength solution	3	1	wavelength sol.	
	Spectrophotom. STD	1	1/setup	Flux calibration	

Calibration plan - FLAMES-UVES

FLAMES – UVES Science Data Calibration Plan

(per instrument setting, i.e. plate, fibre mode, and central wavelength)

	Calibration	number	frequency [1/days]	purpose
1	Fibre Flatfields	3	1 / 1	pixel-to-pixel sensitivity vari
				fibre-to-fibre transmission
				fibre localisation
line in				fibre PSF modelling
				blaze correction
	Slit Flatfields	3	1 / 7	pixel-to-pixel sensitivity vari
	attached Fibre Flatfields	n	o.r.	high-precision flatfielding
	Wavelength	1	1 / 1	dispersion solution
				resolving power
	Sim. Fibre Order Definition	1	1 / 1	order and background defini
	Sim. Fibre Format Check	1	1 / 1	dispersion guess solution
	Bias	5	1 / 1	master biases, bias character
	Dark	3	1 / 30	master darks, dark current,
			,	

Calibration plan - FLAMES-GIRAFFE

FLAMES — CIRAFFE Science Data Calibration Plan

-<u>ipartiestromant.secting,-i.e., plate</u>, fifeermude<u>, resolution - red</u>-sertiest wewder g<mark>w</mark>

Calibration	nymhær	thequency [1/days]	Julyase	
Madialde	1	1/1	pinel-up-pinel sensitivity veri	
			ທີ່ໄທຮະບັດ-ທີ່ໄທຮະໄທສາສາດທີ່ສະດັ່ງກາ	
			films(=spanns,) localissiion	
schedd Plantede	59).	<i>p.a</i> .	high-presign flettelding	
Waralangth	1	1./_1	dispersion solution	
			naanbaing proven	
			sht garmany	
)Sigs	5	1/1	-mester bisses, bies character	
- Dagreki	5	1/30-	mester darks, dark mmeri), \cdot	
1179: Mun Standard	99	19T.	nesponse asmerbion, fur cali	
-}- scientist (Unix	594-	19.T.	- nel. mens. DPU soney / Sky :	
ARCUS: Flux Standard .	1	1/1	nesponse amneolóm, fux celi	
-}- susched IInis	5	1/1	nel. trens. ARCOS emer / f	

are = or comparisonly, according CBs to be provided by user n = combar to be defined by user

Calibration plan - CRIRES

Calibration	Frequency	Purpose
 Dark	1/day	Dark subtraction
Flat field	1/day	Flat field calibration
Distortion map photon transfer	1/year 1/warmup	System characterization

Calibration plan - VISIR

Photometric standards from a subsample (12) of: Cohen et al. 1999, AJ 117, 1864 every three hours during the night (in SM).

The observatory does not provide standard calibrations for VISIR medium and high resolution spectroscopy. Thus for medium and high resolution mode the observer has to supply his own are identication by supply u.g. preables also negative and the algorithm of the site of the interval of the second state of