Advanced Data Products at ESO (the challenge of photometric calibration of ESO archival data)

P.Rosati (ESO) with special thanks to: J.Retzlaff, C.Rite, R.Slijkhuis, B.Vandame, N.Delmotte (DMO/ADP), M.Nonino (TS)

ESO Calibration Workshop - Jan 24, 2007

ESO Science Archive Facility (SAF)

- ESO operates one of the world's largest astronomical archive, the Science Archive Facility (SAF)
- The VO System Dept. @ESO was created in Nov 2004 with the aim of transforming the SAF into a powerful scientific resource for the ESO and world-wide community
- Key project: Populate the SAF with an increasing number of <u>Advanced Data Products</u> (ADP), i.e. science ready calibrated data (both imaging and spectra), and a larger volume of intermediate-level data products Motivations:
 - 1) an increasing demand from the community to access highlevel data products in the SAF
 - 2) ADP significantly boost scientific productivity of the SAF
 - 3) A prompt scientific exploitation of the VO infrastructures heavily relies on the availability of large volumes of ADP

ESO Science Archive: user top-wish-list

Science related needs of Archive Users

ESO Archive User Survey: ESO Messenger 125,41 (Sep 06) <u>http://archive.eso.org/archive/stats/survey/survey_results.html</u>

- More pipeline reduced/science ready data
- Calibration related (better access)
- Data Quality characterization
- Data reduction support
- Others

The Challenge of Advanced Data Products

- The creation of a large number High Level Science Data Products from ground-based Archives is very challenging:
 - Photometric calibration, large number of instruments/ modes, non-homogeneous observing conditions/strategies
 - Even harder for MOS spectroscopy, but feasible for 3D spectroscopy
- On-going ground-based efforts deal solely with (public) surveys, e.g.: NOAO, CFHLS, UKIDSS, SLOAN (also spec), ...
- For space observatories, the task of producing HLSDPs from generic archival programs is easier. On-going efforts include HST, Chandra, XMM, ISO, Spitzer, etc. with plans to publish data products with VO standards
- First efforts have focused on Large Programs and Surveys to face the complexity and volume of the data sets and to guarantee their legacy value

Science Requirements for ESO produced ADP

- Final products: fully processed, <u>full stack and mosaic</u> of entire imaging data set + associated weight maps
- <u>Astrometric accuracy</u>:

0.1 arcsec rms, homogeneous across the entire imaging area (limited by the astrometric accuracy of reference catalog) \rightarrow easy with MVM data reduction system

 <u>Photometric accuracy</u>: always better than 0.05 mag. Driver: photometric redshift accuracy, SED fitting, CMDs Goal: 1–3 % in optical and 2–4% in near–IR, <u>homogeneous across mosaics</u> → challenging, it takes 99% of the time of the entire process (unless there is a reference photometric catalog, e.g. 2MASS)

Creating Advanced Data Products with ESO/MVM

- **ESO/MVM** (Multi-Vision Model): end-to-end, high-throughput image reduction system, originally developed by B.Vandame as part of the EIS project
- Seamless processing of optical & near-IR data (WFI, ISAAC, SOFI, VIMOS, FORS2,..)

the work of months is typically reduced to one day !

• Major intellectual investment over 10 yrs: 171,000 lines of code (SExtractor: 30,000)

GOODS/ISAAC ADP Data Release (v1.5 June 05, v2.0 Jan 07)

- Part of the GOODS/ESO Public Programme in CDFS (PI: Cesarsky)
- New v2.0 final release soon. Deepest large nearIR field carried out to date
 - 160 arcmin² in J,H,K, 127 arcmin² H (J,H,K: 25.5, 25, 25 AB mag lim at 5σ)
- Fully processed and calibrated mosaics with ESO/MVM data reduction system (~50,000 raw frames → 160 final science-ready frames).
 A few % accuracy of photometric calibration
- Intensive use by the worldwide community: it complements HST and Spitzer data for galaxy evolution studies out to z~7
- Large number of papers/projects based on this high-quality data set
- Scientific value greatly enhanced by many spectroscopic surveys:

⇒ thousands of reduced 1D spectra being ingested as ADP into SAF

The challenge of photometric calibration

Rescaling zero points in a given field observed over several years...

This has to be done for 26 tiles in J, 26 in Ks, and 24 in H!

Illumination correction: a weak link in the photometric calibration process...

- No adequate calib data to build reliable Illumination maps
- No good monitor of time-dependence
- Need specific Ill-Maps OBs to run monthly for each instrument/filter
- Just relative photom needed: dense star fields better than dithered stds fields

CDFS VIMOS-U

FoV: 25x30' - 0.9" seeing

Depth: 29 AB_{mag}

Input images: 150

ZP error <0.05 mag

30 Doradus

2x2 WFI mosaic
B, V, OIII, H_α
FoV: 1 deg²
Input images: 300
Non-photometric conditions (need external calibration)
Release date: Dec 18, 06

How can we populate the Archive with more high-level imaging data products ?

- Accuracy of photometric calibration sets the volume of ADP which can be produced from the SAF with a given amount of resources (if there only was no atmosphere..)
- by relaxing this requirements we could populate the SAF with a large number of high-level DPs, e.g.:

ESO/MVM can be used to gradually scan the entire Archive (imaging instruments) to produce <u>Advanced Stacks</u>: combined images on a common astrometric grid per night/runID/ target/filter + reduced standards.

ZPs from QC or left to Phe users

Lessons learned (user perspective) how can we even do better ?

- Standard Calibration plan could be upgraded, without extraresources and overheads, to allow a significant improvement in (spectro)photometric calibration of archival data
 - more structured selection of stds (possibly twice a night), to allow better determination of extinction and color terms
 - ~monthly execution of Calib OBs for Illumination Corrections (not really 2nd order corrections to instrumental signature)
- More emphasis on modeling the atmosphere (along with the instrument)
- Calibration Proposals are needed (see HST): using <u>new and</u> <u>archival</u> data (shifting the burden to the community) to
 - provide instrument modeling for a large suites of instruments/modes
 - provide post-calibration (e.g. with smaller La Silla telescopes)