Environments of High-Redshift AGN

Andrew Zirm

Johns Hopkins University

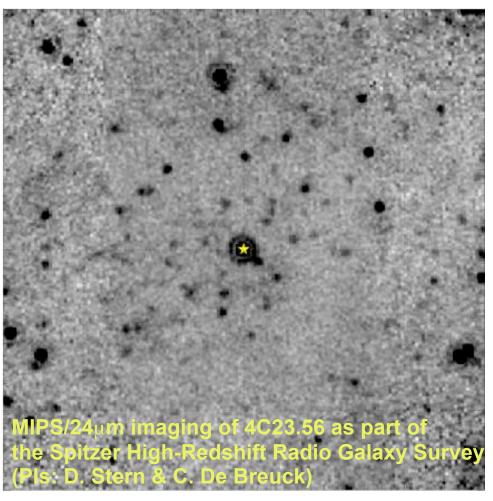
Some Motivation

- ⇒ Galaxy overdensities (protoclusters) provide a valuable method of linking galaxies from one epoch to another
- ⇒ Empirical relations such as that between color and magnitude (red sequence) and morphology and density provide excellent baselines for quantifying galaxy evolution
- ⇒ Environmental effects on galaxy evolution/formation can be studied in rare high density regions which may not appear in general blank field surveys

Talk Summary

- \Rightarrow Finding (z > 2) Protoclusters
 - ⇒ Miley et al. VLT Large Program (Kurk, Pentericci, Venemans, Overzier)
 - \Rightarrow Spectroscopically confirmed (Ly α and H α emitters)
 - ⇒ ACS imaging of z~6 SDSS Quasar fields (Zheng, Stiavelli)
 - ⇒Lyman-break selection
 - ⇒ Large Spectroscopic Surveys (Steidel et al.)
 - ⇒ Serendipitous redshift "spikes"
 - ⇒ Redshifts for both field and protocluster
 - ⇒ 24µm Spitzer/MIPS imaging, surface overdensities of starforming galaxies
 - \Rightarrow Example of 4C23.56 at z=2.48
- ⇒ Studying Protocluster Galaxies
 - ⇒ Multi-wavelength to build SED of protocluster gals.
 - ⇒NIR spectroscopy for the brightest objects (K <~ 19.5)
 - ⇒Requires imaging of large fields
 - ⇒ NIR imaging follow-up, evolution of the red-sequence
 - **⇒Example of MRC1138-262 at z=2.16**

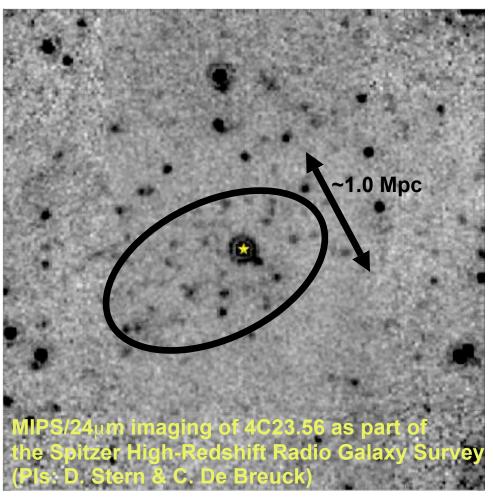
The Mpc-Scale Environment of 1 < z < 4 Radio Galaxies


- ⇒ Diversity of companion galaxies detectable at these redshifts
 - ⇒ Star-forming (both continuum and line-selected)
 - \Rightarrow AGN
 - ⇒ Quiescent, near-infrared selected galaxies
- ⇒ Spans the epoch of virialization from protoclusters to X-ray luminous clusters
- \Rightarrow A redshift gap (1.5 < z < 2.0) still exists for observed (proto) clusters (but some on-going efforts, Galametz's talk this conference)
- ⇒ Imaging surveys of a few Mpc surrounding the RG
 - ⇒ Therefore, not a complete survey of galaxies which will end up in the cluster (cf. Roderik's talk)
 - ⇒ More complete for z~1 clusters where spectroscopy is much more efficient ("outskirts" surveys)
 - ⇒ Follow-up spectroscopy of line-emitting candidates at z >2 and of quiescent (early-type galaxies) at z~1

Finding Protoclusters

- ⇒ Identify rare, highly-luminous AGN
 - ⇒ Precise emission-line redshifts
 - ⇒ Host galaxy properties (K-z)
- ⇒ Color-select candidate companion galaxies
 - ⇒ Include narrow-band(s) for prominent emission lines
 - ⇒ Use broad-band colors, Lyman-break Galaxies (z >~ 2.5)
 - ⇒ Near-infrared imaging used to select 4000A/Balmer break objects
- ⇒ X-ray imaging to identify AGN
- \Rightarrow Spitzer/MIPS 24µm imaging of dusty star-forming galaxies (and hot dust from AGN) at 2 < z < 3

24µm selection of protoclusters?


 \Rightarrow Example of 4C23.56 at z=2.48

- ⇒ Protocluster candidate from Knopp&Chambers 1997
- ⇒Factor ~2 surface overdensity
- ⇒ At this redshift, 24µm band is sensitive to PAH emission in star-forming galaxies
- \Rightarrow flux distribution of companion candidates peaked around 100 -200 μ Jy which corresponds to SFR~100-200 M $_{\odot}$ yr $^{\text{-1}}$, so not crazy
- ⇒Too faint for IRS spectroscopy
- \Rightarrow IRAC "bump" sources, 1.6µm peak of stellar emission in IRAC 5.8µm band at z~2.5, will need deeper ch. 3 and 4 IRAC data (some soon to be public)

24µm selection of protoclusters?

 \Rightarrow Example of 4C23.56 at z=2.48

- ⇒ Protocluster candidate from Knopp&Chambers 1997
- ⇒Factor ~2 surface overdensity
- ⇒ At this redshift, 24µm band is sensitive to PAH emission in star-forming galaxies
- \Rightarrow flux distribution of companion candidates peaked around 100 -200 μ Jy which corresponds to SFR~100-200 M $_{\odot}$ yr $^{\text{-1}}$, so not crazy
- ⇒Too faint for IRS spectroscopy
- ⇒ IRAC "bump" sources, 1.6μm peak of stellar emission in IRAC 5.8μm band at z~2.5, will need deeper ch. 3 and 4 IRAC data (some soon to be public)

Studying Protocluster Galaxies

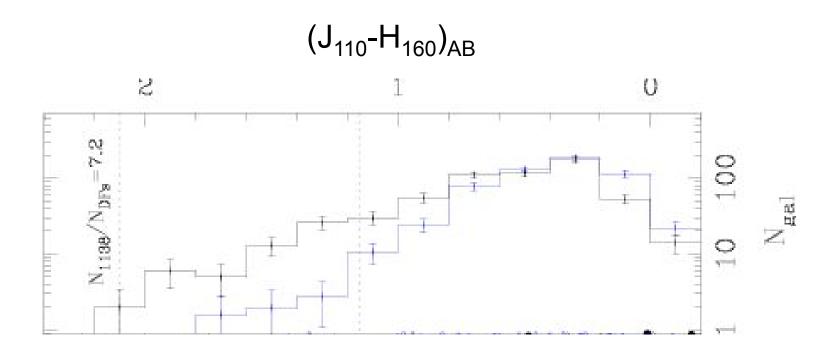
- ⇒ Spectroscopy of line-emitting candidates
 - ⇒ NIR for very brightest quiescent candidates
- ⇒ Deeper imaging to enable color-selection of lower luminosity sources (LBGs)
- ⇒ Multi-wavelength studies to constrain AGN fraction

Studying Protocluster Galaxies

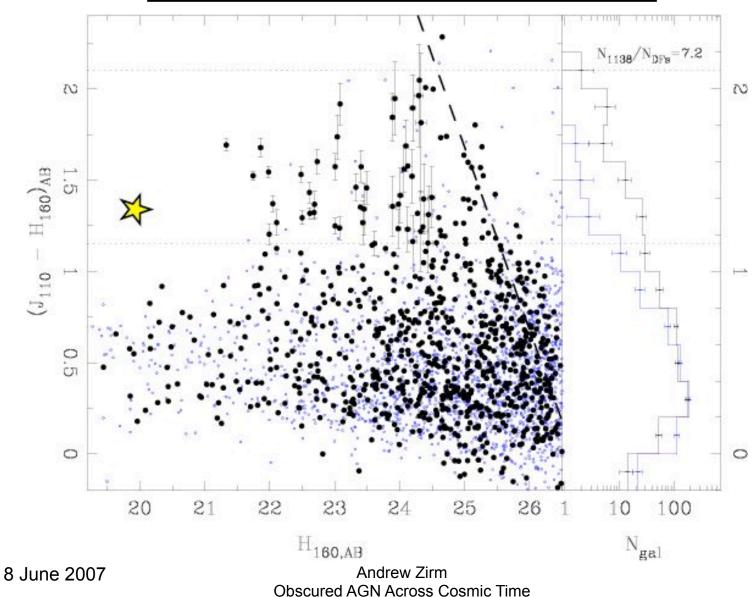
- ⇒ Spectroscopy of line-emitting candidates
 - ⇒ NIR for very brightest quiescent candidates
- ⇒ Deeper imaging to enable color-selection of lower luminosity sources (LBGs)
- ⇒ Multi-wavelength studies to constrain AGN fraction

Deep near-infrared imaging to select quiescent (red sequence?) galaxies

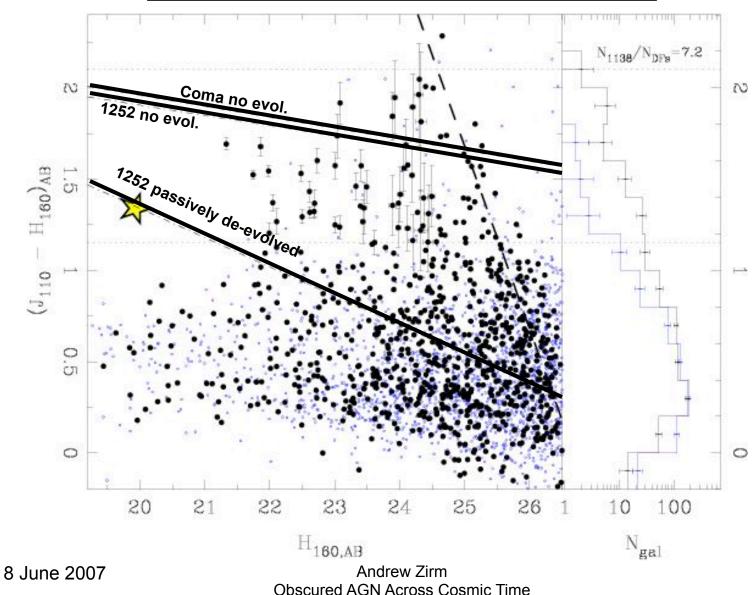
Red Galaxies in the Protocluster Surrounding MRC1138-262 (z=2.16)

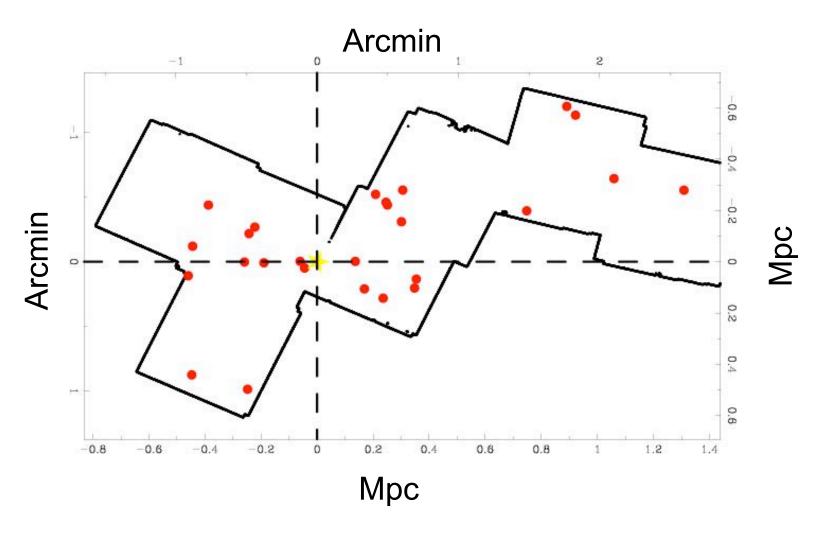

- \Rightarrow One of the Miley et al. protoclusters containing spectroscopically-confirmed Ly α and H α emitters (Kurk et al. 2000, 2004a,b)
- ⇒ Surface-overdensity of EROs known from the ground (Kurk et al. 2004a,b)
- \Rightarrow Targeted 7 NICMOS Camera 3 pointings follow-up in J₁₁₀ and H₁₆₀ filters
 - \Rightarrow Span the 4000A/Balmer break at z=2.16
- ⇒ Also, g and I band imaging with ACS and several optical and NIR ground-based datasets. (ACS+)NICMOS give accurate colors at wavelengths comparable to ACS studies of z~1 clusters. In particular, we compare to RDCS 1252.9-2927 at z=1.24 (Blakeslee et al. 2003)

Red Galaxies in the Protocluster Surrounding MRC1138-262 (z=2.16)


- \Rightarrow One of the Miley et al. protoclusters containing spectroscopically-confirmed Ly α and H α emitters (Kurk et al. 2000, 2004a,b)
- ⇒ Surface-overdensity of EROs known from the ground (Kurk et al. 2004a,b)
- \Rightarrow Targeted 7 NICMOS Camera 3 pointings follow-up in J₁₁₀ and H₁₆₀ filters
 - \Rightarrow Span the 4000A/Balmer break at z=2.16
- ⇒ Also, g and I band imaging with ACS and several optical and NIR ground-based datasets. (ACS+)NICMOS give accurate colors at wavelengths comparable to ACS studies of z~1 clusters. In particular, we compare to RDCS 1252.9-2927 at z=1.24 (Blakeslee et al. 2003)

Factor of ~7x overdense compared to deep (blank) field data


Color-Magnitude Diagram for MRC1138-262 NICMOS Fields


Color-Magnitude Diagram for MRC1138-262 NICMOS Fields

Color-Magnitude Diagram for MRC1138-262 NICMOS Fields

Spatial Distribution of Red Galaxies

Summary

- ⇒ Protoclusters exist around high-z radio galaxies and contain a variety of galaxy types, from vigorously star-forming to relatively quiescent
- ⇒ The "red sequence" does not exist in its low-scatter form in the case of MRC 1138
- ⇒ Relatively shallow MIPS/24μm imaging may provide an efficient means to detect new protoclusters

Future

- \Rightarrow Fit SEDs of 1138 galaxies to determine ages/masses (best current estimate 1.5-2.5 Gyr, few x 10¹⁰ M_{\odot} for the red gals.)
- ⇒ Deeper. larger field red sequence studies for more proclusters with HST/WF3
- ⇒ MIPS-selected protoclusters, if confirmed, will provide ideal high-z target fields from ALMA