The Evolution of AGN Obscuration

Ezequiel Treister (ESO) Meg Urry (Yale) Julian Krolik (JHU)

Supermassive Black Holes Many obscured by gas and dust

How do we know that?

Local AGN Unification

-> Explain Extragalactic X-ray "Background"

Credit: ESO/NASA, the AVO project and Paolo Padovani

Observed X-ray "Background"

Frontera et al. (2006)

X-ray Background

XRB well explained using a combination of obscured and unobscured AGN.

Setti & Woltjer 1989
Madau et al. 1994
Comastri et al. 1995
Gilli et al. 1999,2001
And others...

Obscured AGN Fraction

Obscured AGN Fraction

Obscured AGN Fraction

Redshift Dependence?

Incompleteness does not allow to rule-out intrinsically constant fraction of obscured AGN.

Meta-Survey

Bivariate X-ray and optical flux limits

Spectroscopic incompleteness is a strong function of optical magnitude.

Treister & Urry, 2006

Total effective area of meta-survey

Ratio vs Redshift

Ratio vs Redshift

Ratio vs Redshift

Evolution independent of choice of host Galaxy (only really Important parameter).

See Also: La Franca et al. 2005 Ballantyne et al. 2006 Akylas et al. 2006

```
Treister & Urry, 2006
```

Ratio vs Luminosity

➢ Completely unobscured AGN
 ➢ Narrow redshift range, 0.8<z<1.2
 ➢ Wide range in luminosity
 ➢ Data at 24 µm from Spitzer

➢ Completely unobscured AGN
 ➢ Narrow redshift range, 0.8<z<1.2
 ➢ Wide range in luminosity
 ➢ Data at 24 µm from Spitzer

Low L	High L
•GOODS: North+South fields	 SDSS DR5 Quasar sample
10 unobscured AGN	•11938 quasars, 0.8 <z<1.2< td=""></z<1.2<>
All with Spitzer 24 µm photometry	•192 with Spitzer 24 µm photometry
•8 with GALEX UV data	•157 of them with GALEX UV data

Bolometric luminosity constructed from NUV to mid-IR.

No change in NUV/Bol ratio with luminosity!

Treister & Krolik, in prep.

Change in 24 µm/Bol ratio with luminosity!

Lower ratio at high L → Consistent with larger opening angles at higher luminosities.

Treister & Krolik, in prep.

Compton Thick AGN

Defined as obscured sources with $N_{\mu} > 10^{24} \text{ cm}^{-2}$. Very hard to find (even in X-rays). Observed locally and needed to explain the X-ray background. Number density highly uncertain. High energy (E>10 keV) observations are required to find them.

INTEGRAL AGN logN-logS

Data points from Beckmann et al. 2006

Space Density of CT AGN

Space Density of CT AGN

XRB Intensity

X-ray Background

- Spread in Γ
- Original XRB normalization
- Strong degeneracy between XRB intensity and density of CT AGN

Gilli et al, 2006

Summary

- The obscured AGN fraction decreases with increasing luminosity.
- Ratio of IR to Bolometric luminosity in unobscured AGN suggest this is due to a change in opening angle.
- ✓ The obscured AGN fraction increases with redshift as $(1+z)^{0.4}$.
- ✓ Observed spatial density of CT AGN and individual sources favors the original HEAO-1 XRB intensity with a Compton reflection component of ~1.

u-z SDSS QSO Colors

