Metallicity of Narrow-Line Regions in High-z Narrow-Line Radio Galaxies

Tohru Nagao

National Astronomical Observatory of Japan

Roberto Maiolino

INAF / Osservatorio Astrofisico di Roma

Alessandro Marconi

Università di Firenze

Introduction

> Why Metallicity ?

Metallicity \Rightarrow Past Star-Formation History
 Constraints on Galaxy Evolutionary Scenarios

> Why High Redshift ?

Interests on Major Era of Galaxy Evolution
 Constraints on the Early Star-Formation Epoch

> Why AGN ?

Very Bright (⇔ normal galaxies are too faint...)
Various Emission Lines in Rest-Frame Ultraviolet

<u>Metallicity of BLRs in AGNs</u>

"Metallicity decreases at z>3" (DeBreuck+00)

NV of radio galaxies is generally very faint (only upper limit in most cases)

Metallicity diagnostics without NV emission seem highly crucial !!

Powerful Diagnostics for NLR Metallicity

Our Study on the NLR Metallicity (Data)

49 narrow-line radio galaxies at 1.2 < z < 3.8
correlation: consistent to photoionization model

Shock Excitation in NLRs of Radio Galaxies ??

Not only BLR, the NLR metallicity also depends on L_{AGN} but does not show any redshift evolution at 1.2<z<3.8.

Discussion

- Luminosity-Metallicity Relation
- Seen in both BLRs and NLRs
- No Redshift Evolution

<u>Discussion</u>

Luminosity-Metallicity Relation
 Seen in both BLRs and NLRs
 No Redshift Evolution

But, in (non-AGN) galaxies... Clear Evol. in M-Z relation.

<u>Discussion</u>

Luminosity-Metallicity Relation
 Seen in both BLRs and NLRs
 No Redshift Evolution

But, in (non-AGN) galaxies... Clear Evol. in M-Z relation.

... inconsistent situation?

Interpretation (1)

- Downsizing chemical evolution.
- Massive galaxies completed their evolution in higher redshift.
- High-z AGNs are associated in most massive galaxies.
- AGNs completed their evolution at z>4 (no evolution at z<4)...
- [cf. K-z relation of radio galaxies]
 Interpretation (2)
 - AGN luminosity is determined by M_{BH} and accretion rate (L/L_{Edd}).
 - L/L_{Edd} may be essential for Z.
 - M_{BH} may be not important for Z.
 - AGN L-Z relation and galaxy M-Z relation may be independent...

<u>Summary</u>

> NLR Metallicity Diagnostic Method

Without NV \(\Leftarrow Applicable to Metal-Poor Objects)
 Using Strong Lines \(\Leftarrow Applicable to Faint Objects)

> Application to High-z Radio Galaxies

~ NLR Metallicity: Depends on L, Independent of z ~ Consistent to Previous Results on BLRs

> Interpretations: Not Simple...

Downsizing Chemical Evolution ?Effects of Mass Accretion Rate ?

Further Observations (Future Study)

~ 10 More Objects at z > 3