ENVIRONMENTAL PROPERTIES OF z~[1-3] AGN AND **STARFORMING GALAXIES:** THE Spitzer VIEW ON **CLUSTERING EVOLUTION**

M.Magliocchetti (INAF-OATS & ESO)

<u>G.De Zotti</u> (INAF-OAPD), L.Danese (SISSA), L.Silva (INAF-OATS) G.L.Granato (INAF-OAPD), A.Lapi (SISSA), D.Fadda (Herschel Science Centre – Caltech), <u>M.Cirasuolo</u> (SUPA, Edinburgh), J.Dunlop (SUPA, Edinburgh), Ross McLure (Supa, Edinburgh), O.Almaini

LAYOUT OF TALK

Selection criteria for 24μm-detected galaxies @z=2
 Properties of sources
 Clustering analysis (2D and 3D) at z@2 and z@1
 Results on LSS evolution, host masses and occupational properties of z~2 vs z~1 galaxies.

<u>LAYOUT OF TALK</u>

Selection crite <u>SKIPPED!</u> m-detected galaxies @z=2
 Properties of sources
 Clustering analysis (2D and 3D) at <u>z@2</u> and <u>z@1</u>
 Results on LSS evolution, host masses and occupational properties of z~2 vs z~1 galaxies.

LAYOUT OF TALK

1) Selection crite $\frac{SKIPPED}{\Rightarrow QUICK!} d galaxies @z=2$

- Properties of sources
- 3) Clustering analysis (2D and 3D) at $\underline{z@2}$ and $\underline{z@1}$
- 4) Results on LSS evolution, host masses and occupational properties of z~2 vs z~1 galaxies.

The Moral of the Tale Considered two samples of F_{24um}>0.35-0.4mJy galaxies at z>~1.6 and 0.6<z<1.2 with similar selection criteria $\rightarrow 30-35\%$ AGN A) z>1.6 sources v.strongly clustered: ro~15 Mpc; hosted by v.massive halos M>10¹³ M_{sun} and common (~0.5-20 galaxies per halo). B) For sources in 0.6<z<1.2 sample ro~7 Mpc; hosted by less massive structures M>10^{11.7} M_{sun} and rare.

DIFFERENT OBJECTS: AGN/SB activity moves to lower M at lower $z \rightarrow COSMIC DOWNSIZING$

The Moral of the Tale Considered two samples of F_{24um}>0.35-0.4mJy galaxies at z>~1.6 and 0.6<z<1.2 with similar selection criteria $\rightarrow 30-35\%$ AGN A) z>1.6 sources v.strongly clustered: ro~15 Mpc; hosted by v.massive halos M>10¹³ M_{sun} and common (~0.5-20 galaxies per halo). B) For sources in 0.6<z<1.2 sample ro~7 Mpc; hosted by less massive structures M>10^{11.7} M_{sun} and rare.

N.B. For this analysis considered a slightly wider area (3.97 sq.deg.) which also includes part of sky without IRAC information

N.B. For this analysis considered a slightly wider area (3.97 sq.deg.) which also includes part of sky without IRAC information

THE FLS TWO-POINT ANGULAR CORRELATION

FUNCTION

THE FLS TWO-POINT ANGULAR CORRELATION

<u>Not possible to estimate w(0) for only AGN candidates</u> (too few objects). However...

AGN vs SB candidates on IRAC+MIPS area

<u>Not possible to estimate w(0) for only AGN candidates</u> (too few objects). However...

AGN vs SB candidates on IRAC+MIPS area

Both AGN and SB compatible with total R>25.5 signal→ <u>Most likely belonging to</u> <u>same structures</u>

<u>REDSHIFT DISTRIBUTION OF OBSCURED</u> 24µm-SELECTED GALAXIES

1) Template SED set them in range z=[1.6-2.7] (PAH \rightarrow 24µm)

2) IRS spectroscopy for a number of smaller subsamples all converge to z=[1.7-2.6] (Weedman et al. 2006; Pope et al. 2006; Yan et al. 2005 and 2007; Houck et al. 2005)
3) Granato et al. (2004) model found to correctly predict

number counts of obscured 24μ m-selected galaxies

<u>REDSHIFT DISTRIBUTION OF OBSCURED</u> 24µm-SELECTED GALAXIES

1) Template SED set them in range z=[1.6-2.7] (PAH \rightarrow 24µm)

2) IRS spectroscopy for a number of smaller subsamples all converge to z=[1.7-2.6] (Weedman et al. 2006; Pope et al. 2006; Yan et al. 2005 and 2007; Houck et al. 2005)
3) Granato et al. (2004) model found to correctly

ed 24µm-selected galaxies

<u>REDSHIFT DISTRIBUTION OF OBSCURED</u> 24µm-SELECTED GALAXIES

1) Template SED set them in range z=[1.6-2.7] (PAH \rightarrow 24µm)

2) IRS spectroscopy for a num all converge to z=[1.7-2.6] (Nature al. 2006; Yan et al. 2005 and 2003) Granato et al. (2004) model

By deprojecting via Limber equation, for $\xi(r)=(r/r_0)^{\gamma}$ we get $r_0=15.2^{+2.3}$ Mpc (~14.0 Mpc for top-hat distribution with z=[1.6-2.7]; $\gamma=1.8$). <u>Very strongly clustered</u> (cfr locally Radio Galaxies and Clusters) \rightarrow see also Farrah et al. (2006)

THE UKIDSS DR1 Sample

- 5σ completeness for F24μm>=0.4 mJy (1041 galaxies)
 -Photometric redshifts for 97% of sources
 -Allows investigation of evolution in clustering properties
 for complete mode of similar galaxies at different z

210 sources with z> 1.6

350 sources with 0.6<z<1.2

THE UKIDSS DR1 Sample

THE UKIDSS CORRELATION FUNCTION(s)

THE UKIDSS CORRELATION FUNCTION(s)

THE UKIDSS CORRELATION FUNCTION(s)

THE UKIDSS CORRELATION FUNCTION(s)

GALAXIES at z>1.6 MUCH MORE STRONGLY CLUSTERED THAN THEIR LOW-z COUNTERPARTS!

r₀=15.9±3.5 Mpc (cfr FLS R>25.5 r₀~15 Mpc)

 $r_0 = 7.0 \pm 1.8 Mpc$

CLUSTERING VS ASTROPHYSICAL PROPERTIES

Correlation Function of astrophysical objects different for different sources and different

from CF dark matter \rightarrow **BIAS**

CLUSTERING VS ASTROPHYSICAL PROPERTIES

Correlation Function of astrophysical objects different for different sources and different

from CF dark matter \rightarrow **BIAS**

On Small Scales (non linear) GALAXY BIAS: CF determined by distribution of sources within haloes \rightarrow allows determination of some astrophysical properties

CLUSTERING VS ASTROPHYSICAL PROPERTIES

Correlation Function of astrophysical objects different for different sources and different

from CF dark matter \rightarrow **BIAS**

On Small Scales (non linear) GALAXY BIAS: CF determined by distribution of sources within haloes → allows determination of some astrophysical properties On Large Scales (linear) HALO BIAS: more massive haloes more strongly clustered → allows estimates of mass of host haloes

Large-scale OK but for both HIGHz and LOWz smooth galaxy distributions do not fit small-scale points. Need $\rho \sim r^{-3}$, more concentrated than DM \rightarrow \rightarrow SIGNATURE FOR CLOSE ENCOUNTERS/MERGING?

DETERMINATION OF ASTROPHYSICAL PARAMETERS

1) Populate haloes with <N>=N₀ (M/M_{min})^α occupational law

HALOES; $N_0 \sim 0.5$; $N(M) = [0.5 - 20] \rightarrow QUITE COMMON$

Despite similar selection criteria objects at z>1.6 and 0.6<z<1.2 very different from each other. AGN and SF activity segregated to much smaller mass systems at lower redshift \rightarrow COSMIC DOWNSIZING

CONCLUSIONS: FLS+UKIDSS 1) On basis of $F_{8\mu m}/F_{24\mu m}$ ratios AGN mainly found for $F_{24\mu m}$ > 0.8 mJy. SB dominate the counts at fainter fluxes. At both z~1 and z~2 <u>AGN ~30-35% of total</u>. 2) Both R>25.5 and z>1.6 sources v.strongly clustered: r₀~15 Mpc $(\rightarrow same population)$. Sources hosted by v.massive halos M>10¹³ M_{sum} and also quite common (~0.5 galaxies per halo 3) Sources 0.62212 much less clustered: ro~7 Mpc. Hosted by less massive structures $M > 10^{-11.7} M_{em}$ and v. rare within these systems (~0.002-0.01 per halo at the smallest masses). 4) Despite photometric similarities 2)+3) \rightarrow low-z and high-z galaxies very different. AGN and SF activity shifted to low masses for lower $z \rightarrow \underline{EVIDENCE FOR DOWNSIZING}$ 5) Galaxies more concentrated towards halo centres than DM and z~O counterparts. Signature for close encounters /merging associated to enhanced AGN + SF activity?

N(z) of F24µm>0.4 mJy UKIDSS SOURCES

