

AGN counts at 24 µm in the XMM/SWIRE/ELAIS-S1 field

Nicola Sacchi, Fabio La Franca

and

C. Feruglio, F. Fiore, C. Gruppioni, M. Polletta, F. Pozzi, S. Puccetti, S. Berta, M. Brusa, P. Ciliegi, A. Cimatti, A. Comastri, A. Franceschini, C. Lonsdale, R. Maiolino, M. Mignoli, S. Oliver, G.C. Perola, M. Rowan-Robinson, H.E. Smith, C. Vignali, G. Zamorani

Dipartimento di Fisica

Universita` degli Studi ROMA TRE

MIR AGN in the XMM/SWIRE/ELAIS-S1 field

Aims

- X-ray surveys and analysis of the local BH mass function suggest that a fraction (factor 2?) of (obscured) AGN has still to be identified

Fraction of obscured AGN as a function of L and z

La Franca et al. 2005

MIR AGN in the XMM/SWIRE/ELAIS-S1 field Method: data AREA

AREA 0.6 deg²

IMAGING BVRI+K photometry (Berta et al. 2006)

SWIRE (3.6, 4.5, 5.8, 8.0 and 24 µm)

X-ray by XMM and Chandra

SPECTROSCOPY ~100 hours with VIMOS and FORS2 @VLT during 2004/2005/2006

~1400 Zs (R<24.5)

LF, Sacchi et al. (in prep)

MIR AGN in the XMM/SWIRE/ELAIS-S1 field Method: SED templates fitting (see Polletta et al. 2007)

MIR AGN in the XMM/SWIRE/ELAIS-S1 field Method: SED templates fitting

90% of the X-ray selected AGN have a MIR AGN SED classification

MIR AGN in the XMM/SWIRE/ELAIS-S1 field Results: counts

MIR AGN in the XMM/SWIRE/ELAIS-S1 field Results: fraction of AGN as a function of flux

The density of MIR selected AGN is two times larger than expected

MIR AGN in the XMM/SWIRE/ELAIS-S1 field Results: fraction of AGN as a function of flux

The density of MIR selected AGN is two times larger than expected

MIR AGN in the XMM/SWIRE/ELAIS-S1 field Conclusions

-The optical spectroscopic classification is not able to identify all the AGN2 population

-The MIR-SED fitting technique selects 90% of the X-ray selected AGN

-The densities of MIR-selected AGN at F_{24} ~0.5 mJy is a about a factor of two larger than expected from X-ray luminosity functions.

Optically and X-ray classified AGN

Counts and Fraction of AGN as a function of 24um flux

Sel:

10000

Counts and Fraction of AGN as a function of 24um flux

Optically and X-ray class. AGN 105 105 N_H≦10²² N_H≦10²² 10²²<N_H<10²⁴ 10²²<N_H<10²⁴ 104 104 Compton-thin Compton-thin dN(S)/dLogS [deg⁻²] ¹⁰, dN(S)/dLogS [deg⁻²] All Silva et al All Silva et al 100 100 10 10 0.1 0.1 1 S_{24µm}[mJy] S_{24µm}[mJy] histo counts 24 Table: Table: histo_counts_24_sele Sel: :f24.gt.307.229 0.8 0.8 0.6 0.6 fracAGN 6.4 fracAGN 0.4 0.2 0.2 0 0 └─ 100 100 1000 1000 10000 f24 (uJy) f24 (uJu)

MIR-SED classified AGN

All X-ray detected sources have an AGN MIR SED