Globular Clusters and Low-Mass X-Ray Binaries in M87

Daniel-Jens Kusterer, Amelia Bayo, Sinan Alis, Genoveva Micheva Tutor: Andrés Jordán

ESO NEON Summer School

NEON 2006 - 08.09.2006

Outline

- 1 Introduction
 - Motivation
 - Globular Clusters
 - Low-Mass X-Ray Binaries
 - Instrument introduction
- 2 Data Analysis
 - HST Data
 - Chandra Data
- 3 Results and Conclusions
 - Discussion
 - Results

Motivation Globular Clusters Low-Mass X-Ray Binaries Instrument introduction

Motivation

- In Milky Way globular clusters form LMXBs efficiently
 - Small sample!
 - \rightarrow Look at M87
- M87 richest globular cluster system in local universe
- ightarrow Increased GC sample of ~ 14000
- Study properties of GCs hosting LMXBs

Motivation Globular Clusters Low-Mass X-Ray Binari Instrument introduction

Motivation

- In Milky Way globular clusters form LMXBs efficiently
 - Small sample!
 - \rightarrow Look at M87
- M87 richest globular cluster system in local universe
- $\rightarrow\,$ Increased GC sample of $\sim\,$ 14000
- → Study properties of GCs hosting LMXBs

Motivation Globular Clusters Low-Mass X-Ray Binaries Instrument introduction

Globular Clusters

- Spherical collection of stars orbiting a galaxy
 - Small and dense
 - Dust and gas free
 - Diameter independent of mass

Old systems, mainly population II stars

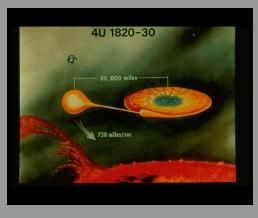
 Luminosity Function used as standard candle

Motivation Globular Clusters Low-Mass X-Ray Binaries Instrument introduction

Globular Clusters

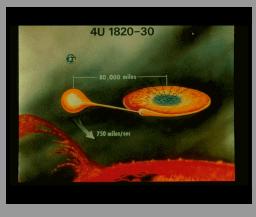
- Spherical collection of stars orbiting a galaxy
 - Small and dense
 - Dust and gas free
 - Diameter independent of mass
- Old systems, mainly population II stars
- Luminosity Function used as standard candle

Motivation Globular Clusters Low-Mass X-Ray Binaries Instrument introduction


Globular Clusters

- Spherical collection of stars orbiting a galaxy
 - Small and dense
 - Dust and gas free
 - Diameter independent of mass
- Old systems, mainly population II stars
- Luminosity Function used as standard candle

Motivation Globular Clusters Low-Mass X-Ray Binaries Instrument introduction


Low-Mass X-Ray Binaries

- Binary Systems
 - Neutron star or blackhole primary
 - Late-type secondary $M \lesssim 2.0 M_{\odot}$
- Mass overflow (Roche lobe filling)
- $L \sim 10^{35} 10^{39}$ erg/s
- Older than 10⁹yr
- Possible formation
 - Direct formation
 - ludal capture
 - Binary exchange processes

Motivation Globular Clusters Low-Mass X-Ray Binaries Instrument introduction

Low-Mass X-Ray Binaries

- Binary Systems
 - Neutron star or blackhole primary
 - Late-type secondary $M \lesssim 2.0 M_{\odot}$
- Mass overflow (Roche lobe filling)
- $~~L \sim 10^{35} 10^{39} ~{\rm erg/s}$
- Older than 10⁹yr
- Possible formation
 - Direct formation
 - Tidal capture
 - Binary exchange processes

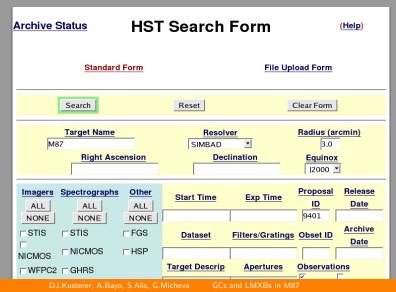
Motivation Globular Clusters Low-Mass X-Ray Binaries Instrument introduction

Low-Mass X-Ray Binaries

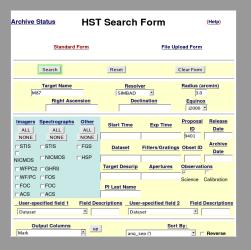
- Binary Systems
 - Neutron star or blackhole primary
 - Late-type secondary $M \lesssim 2.0 M_{\odot}$
- Mass overflow (Roche lobe filling)
- $~~L\sim 10^{35}-10^{39}~{
 m erg/s}$
- Older than 10⁹yr
- Possible formation
 - Direct formation
 - Tidal capture
 - Binary exchange processes

Motivation Globular Clusters Low-Mass X-Ray Binaries Instrument introduction

Optical and X-Ray data


ACS Wide Field Camera 202"×202" FoV 2×560s + 90s F850LP ($\simeq z$ band) 2×375s F475W ($\simeq g$ band)

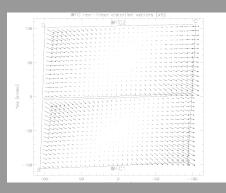
ACIS Imaging mode 8'×8' FoV (S3) 105 ks exposure time



Obtaining optical data

HST Data Chandra Dat

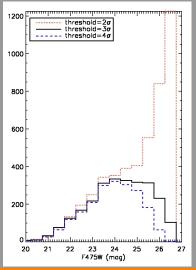
Obtaining optical data

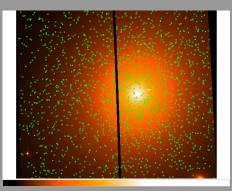


 Obtain data from http://archive.stsci.edu/hst

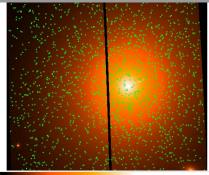
Program ID: GO-9401

• Program PI: Patrick Côté


- Software: PyRAF
- Necessity of drizzling with multidrizzle (calibration files)
 - corrects for built-in geometric distortion (off-axis location of instrument)
 - restores information lost due to undersampling
 - combines dithered images
 - filters cosmic rays


- Software: SExtractor
- Source extracting in both bands
 - DETECT_MINAREA 5
 - DETECT_THRESH 3
 - PHOT_APERTURES 4 8 10 16
 - SATUR_LEVEL 65000
 - MAG_ZEROPOINT 26.068 (F475W, AB)
 - MAG_ZEROPOINT 24.862 (F850LP, AB)
 - PIXEL_SCALE 0.049
 - SEEING_FWHM 0.098
 - BACK_SIZE 32

- Software: SExtractor
- Source extracting in both bands
 - DETECT_MINAREA 5
 - DETECT_THRESH 3
 - PHOT_APERTURES 4 8 10 16
 - SATUR_LEVEL 65000
 - MAG_ZEROPOINT 26.068 (F475W, AB)
 - MAG_ZEROPOINT 24.862 (F850LP, AB)
 - PIXEL_SCALE 0.049
 - SEEING_FWHM 0.098
 - BACK_SIZE 32


- 2608 sources (F475W)
- 2372 sources (F850LP)
- 1911 sources (cross-matched) with TOPCAT

HST Data Chandra Data

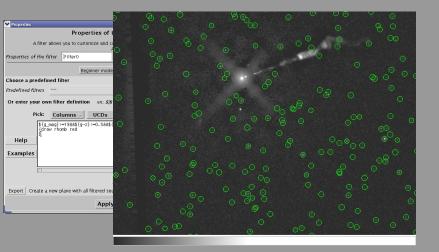
Processing optical data

Match Tables				- 0 X
<u>File H</u> elp				
2 🗙				
Match Criteria-				
Algorithm: Sky			•	
Max Error: 0.1			arcsec	•
		_		
Table 1				
Table: 1: F47	5W		•	-
RA column:	RA	•	degrees 🔻	-
Dec column:	DEC	•	degrees 🖣	-
Table 2				
Table: 2: F85	01.0			
		_		4
RA column:		•	degrees 🔻	_
Dec column:	DEC	•	degrees 🖣	
Output Rows-				
Match Selection	: 🖲 Best Match O	nly	O All Mate	hes
Join Type: 1 an	d 2			•
Jenn () pen				
	GO Stop			
		_		

- 2608 sources (F475W)
- 2372 sources (F850LP)
- 1911 sources (cross-matched) with TOPCAT

DJ.Kusterer, A.Bayo, S.Alis, G.Micheva

GCs and LMXBs in M87


Filtering optical data

▼ Properties _ □ X
Properties of the filter "Filter0"
A filter allows you to customize and constrain the display of catalogue planes in Aladin
Properties of the filter Filter0
Beginner mode Advanced mode
Choose a predefined filter
Predefined filters
Or enter your own filter definition ex: \$\Brag}<10 \draw red square}
Pick: Columns > UCDs > Actions > Maths Units >
\$(g_mag)>=1988\$(g-z)>=0.588\$(g-z)<=1.988\$(elong)>=088\$(elong)<=2 (draw rhomb red] Help
Examples
Save filter Load filter
Export Create a new plane with all filtered sources
Apply Close

- Aladin filter applied to cross-matched catalog
 - \circ 0.5 \leq g-z \leq 1.9
 - $m_z > 19$
 - $m_g > 19$
 - 0 < elongation < 2

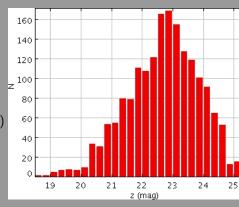
Filtering optical data

HST Data Chandra Data

Analyzing optical data

Calculate distance

$$m_z - M_z = 5 \log d - 5 + A_z$$


- E(B V) = 0.022 (taken from NED database)
- $A_z = 1.485 \times E(B V)$ (from Jordán et al., 2004)

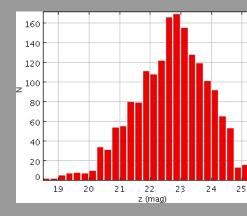
$$\circ~m_{\it peak}\simeq 22.8$$
 (for the z band)

$$(M_{peak}/L_{peak})_z \sim 1.5 \times (M_{\odot}/L_{\odot})_z$$

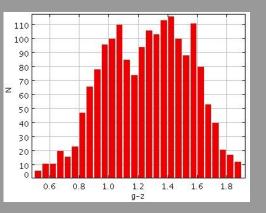
(from PÉGASE models)

$$M_{peak}-M_{\odot}=2.5\log(L_{\odot}/L_{peak})$$

Where m, M, A_z are apparent and absolute magnitudes and extinction, resp.

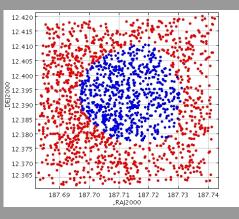


Analyzing optical data


Calculate distance

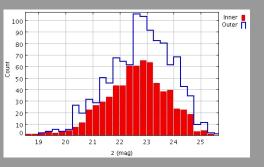
16.1 Mpc

Analyzing optical data

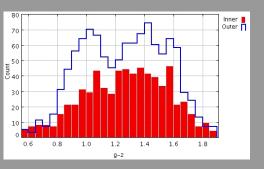


- Two distinct populations
 - g z < 1.2
 - g z > 1.2

Two different mean metallicities


Analyzing optical data

- Comparison between inner and outer part of the population
 - Define two regions
 - No significant shift of the peaks
 - BUT: More metal-rich in inner part


Analyzing optical data

- Comparison between inner and outer part of the population
 - Define two regions
 - No significant shift of the peaks
 - BUT: More metal-rich in inner part

Analyzing optical data

- Comparison between inner and outer part of the population
 - Define two regions
 - No significant shift of the peaks
 - BUT: More metal-rich in inner part

HST Data Chandra Data

Obtaining X-ray data

Chandra		Obse	ervation Search			200
X-ray Cent	ter New Search			Re	trieval List Help	Chandra Data Archive
Search						Rese
Target Name Name Resolver	M87 SIMBAD/NED 💌	Resolve Name	RA/Long/ 12 30 49.42 Coordinate System Equator	Dec/Lat/h +12 23 28.04 Radius 10	arcmin	
Observation ID	2707	Sequence Number		Proposal Number	03400562	
Proposal Title Start Date		PI Name Public Release Date		<u>Observer Name</u> Exposure Time (ks)		
Archived Observed Partially Observed Scheduled Unobserved	Science Category	Solar System Stars and WD WD Binaries and CV BH and NS Binaries SN, SNR and Isolated NS		<u>le</u>	int Observatories R	one A ST OAO XTE pitzer V
ACIS-I ACIS-S HRC-I HRC-S	Grating	None A LETG HETG V	Type CAL GO GTO DDT V	Observing Cyr	A00 A01 A01 A02 A03 A04 V	
Customize Output:						
Sort Order	Status 💌 🖲 asce	nding C descending				
Display	Format HTML V Row Limit 50	•				
Coordinate System	Equatorial J2000 💌 Equinox 2000	Format Sexagesimal (hh/dd mm ss.ss) 💌			
		For online suppo	ort please contact the <u>CXC He</u>	Ipdesk.		

J.Kusterer, A.Bayo, S.Alis, G.Micheva GCs and LMXBs in M87

Obtaining X-ray data

Chandra		Obse	ervation Search		
X-ray Cent	er New Search			Retrie	Chandra Data Archive
Search					Reset
Target Name	M87	Resolve Name		manual and a second sec	arcmin
Name Resolver	SIMBAD/NED 💌		Coordinate System Equatori	al J2000 💌 Equinox 2000	
Observation ID	2707	Sequence Number		Proposal Number	03400562
Proposal Title		PLName		Observer Name	
Start Date		Public Release Date		Exposure Time (ks)	
Archived Observed Status Parially Observed Schieduled Unobserved	Science Categor	Solar System Stars and WD WD Binaries and CV BH and NS Binaries SN, SNR and Isolated NS	Type GO		A00 A A01 A A01 A
HRC-S ¥		HETG 💌	GTO DDT v		A03 A04 v
Customize Output:					
Son Order		nding C descending			
Display	Format HTML Row Limit 50	•			
Coordinate System	Equatorial J2000 💌 Equitox 2000	Format Sexagesimal (hh/dd mm ss.ss) 💌		
3		For online suppo	ort please contact the <u>CXC Help</u>	stesk.	

• Obtain data from

http://cda.harvard.edu/chaser/dispatchOcat.do

- Obs ID: 2707
- Program PI: Patrick Côté

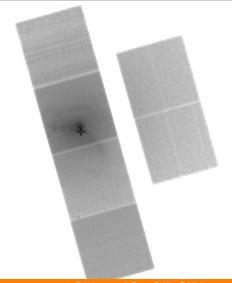
HST Data Chandra Data

Processing X-ray data

❤ fv:	✓ fv: Summary of acisf02707N001_evt2.fits.gz in /scratch/data/m87/xm87/2707/primary/											
File	Edit	Tools										
Index		Extension	Туре	Dimension			View					
	0	Primary	lmage	0	Header	lma	age	٦	Table			
E	_ 1	EVENTS	Binary	18 cols X 6455032 rows	Header	Hist	Plot	All	Select			
	2	GTI	Binary	2 cols X 11 rows	Header	Hist	Plot	All	Select	1		
	3	GTI	Binary	2 cols X 3 rows	Header	Hist	Plot	All	Select	1		
	4	GTI	Binary	2 cols X 1 rows	Header	Hist	Plot	Ali	Select	1		
	5	GTI	Binary	2 cols X 3 rows	Header	Hist	Plot	Ali	Select	1		
	6	GTI	Binary	2 cols X 4 rows	Header	Hist	Plot	All	Select	ī		
☐ 7 GTI		Binary	2 cols X 2 rows	Header	Hist	Plot	All	Select				
ļ												

- One event per photon
- Photon energy, position & time of arrival stored
- $\rightarrow\,$ Possibility of obtaining spectra and images

DJ.Kusterer, A.Bayo, S.Alis, G.Micheva GCs and LMXBs in M8


Processing X-ray data

✓ fv: Binary Table of acisf02707N001_evt2.fits.gz[1] in /scratch/data/m87/xm87/2707/primary/												_ ×		
File	Edit	Tools												Help
		time	ccd id	node id	expno	chipx	chipy	tdetx	tdety	detx	dety	×	y	
Se	lect	10	11	- 11 -	1.1	- 11	- 11	11	11	16	16	16	16	
	All	s				pixel	pixel	pixel	pixel	pixel	pixel	pixel	pixel	
In	vert													
	1	1.4237998696228+08	2	0	3	54	63	3124	4032	3.089413£+03	2.285412E+03	6.096516E+03	3.619580E+03	
	2	1.423799869622E+08	2	3	3	824	84	3145	3262	3.112983E+03	3.053402E+03	5.350648E+03	3.435065E+03	- 1
	3	1.423799869622E+08	2	3	3	882	280	3341	3204	3.308089£+03	3.111021E+03	5.242524E+03	3.607390E+03	-
	4	1.423799869622E+08	2	0	3	51	388	3449	4035	3.414205E+03	2.282513E+03	6.011675E+03	3.933110E+03	-
	5	1.4237998696222+08	2	3	3	887	431	3492	3199	3.459158E+03	3.116515E+03	5.196474E+03	3.751373E+03	-
	6	1.423799869622E+08	2	1	3	400	542	3603	3686	3.568831E+03	2.630400E+03	5.634971E+03	3.988138E+03	-
	7	1.423799869622E+08	2	3	3	799	623	3684	3287	3.650570E+03	3.028932E+03	5.229164E+03	3.959317E+03	
	8	1.423799869622E+08	2	1	3	327	727	3788	3759	3.752404E+03	2.558263E+03	5.654902E+03	4.184366E+03	
	9	1.423799869622E+08	2	1	3	377	952	4013	3709	3.977418E+03	2.607432E+03	5.546846E+03	4.387768E+03	
	10	1.423799870032E+08	7	3	3	881	10	4798	1712	4.761073E+03	4.602163E+03	3.414655E+03	4.604163E+03	-
	11	1.423799870032E+08	7	2	3	671	12	4588	1714	4.551036E+03	4.600621E+03	3.472810E+03	4.402331E+03	-
	12	1.423799870032E+08	7	0	3	74	18	3991	1720	3.955225E+03	4.595276E+03	3.638712E+03	3.830059E+03	
	13	1.423799870032E+08	7	2	3	686	22	4603	1724	4.566297E+03	4.590324E+03	3.478607E+03	4.419804E+03	
	14	1.423799870032E+08	7	0	3	85	28	4002	1730	3.966067E+03	4.585139E+03	3.645548E+03	3.843234E+03	
	15	1.423799870032E+08	7	2	3	665	44	4582	1746	4.545069£+03	4.568715£+03	3.505142E+03	4.405194E+03	
	16	1.423799870032E+08	7	0	3	248	47	4165	1749	4.128573£+03	4.566060£+03	3.620073E+03	4.004861E+03	
	17	1.423799870032E+08	7	0	3	24	52	3941	1754	3.905077£+03	4.561281E+03	3.684976E+03	3.790943E+03	
	18	1.423799870032E+08	7	0	3	118	55	4035	1757	3.998686 E +03	4.557890£+03	3.662985E+03	3.881995E+03	
	19	1.423799870032E+08	7	0	3	206	61	4123	1763	4.087201E+03	4.551770E+03	3.644996E+03	3.968879E+03	
	20	1.423799870032E+08	7	0	3	176	71	4093	1773	4.056795€+03	4.541694E+03	3.662902E+03	3.942319E+03	
														_
RI_														27
Go	to:	Edit cell:												
_						_	_	_						_

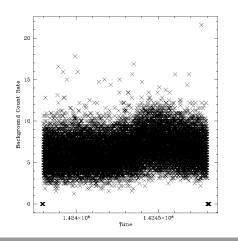
- One event per photon
- Photon energy, position & time of arrival stored
- $\rightarrow\,$ Possibility of obtaining spectra and images

Processing X-ray data

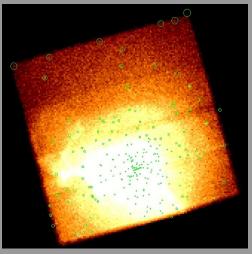
6 ACIS chips

- Using Software CIAO to:
 - Cut to S3
 - Restrict the image to HST FoV
 - Construct the background light curve (S1) No background flares

HST Data Chandra Data


Processing X-ray data

- 6 ACIS chips
- Using Software CIAO to:
 - Cut to S3
 - Restrict the image to HST FoV
 - Construct the background light curve (S1)
 - No background flares


Processing X-ray data

- 6 ACIS chips
- Using Software CIAO to:
 - Cut to S3
 - Restrict the image to HST FoV
 - Construct the background light curve (S1)
 - $\rightarrow~$ No background flares

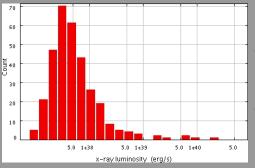
Processing X-ray data

 celldetect source extraction algorithm (alt. wavdetect)

 Manual removal of problematic regions

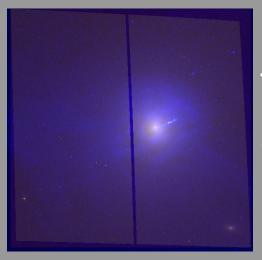
HST Data Chandra Data

Processing X-ray data



celldetect source extraction algorithm (alt. *wavdetect*)
Manual removal of problematic regions

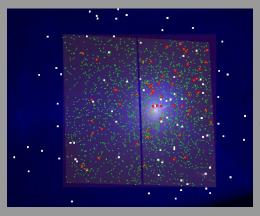
DJ.Kusterer, A.Bayo, S.Alis, G.Micheva GCs and LMXBs in M87


Analyzing X-ray data

- LF shape compatible with LMXB population, peak artificial
- Higher luminosities suggest possible BH presence

Discussion Results

Cross-matching optical & X-rays

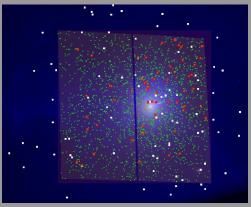


RGB image (ds9)

- Red: F850LP (\simeq Sloan z)
- Green: F475W (\simeq Sloan g)
- Blue: X-ray
- Cross-matching the catalogue Green: Optical catalogue White: X-ray catalogue Red: Cross-matched

Discussion Results

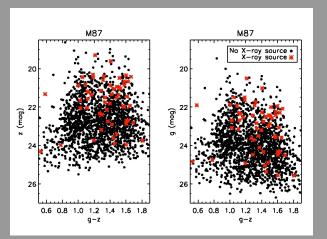
Cross-matching optical & X-rays



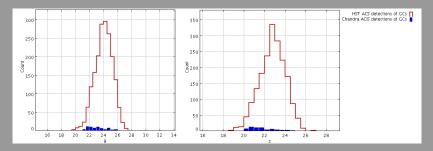
RGB image (ds9) Red: F850LP (cs Sloan z) Green: F475W (cs Sloan g)

- Cross-matching the catalogues
 - Green: Optical catalogue
 - White: X-ray catalogue
 - Red: Cross-matched

Discussior Results


Cross-matching optical & X-rays

- Cross-match performed with TOPCAT
- Using RA & DEC for matching (0.1" threshold)
 - 1769 optical sources
 - 179 X-ray sources
 - 57 cross-matches


Discussion Results

Properties of optical counterparts

- Redder in color
- Brighter in g & z mag
- $\sim \sim 2$ times more frequent in the red peak

Properties of optical counterparts

- Different behaviour of two populations
 - GCs containing LMXBs are brighter
- Higher density favours LMXB formation

Discussion Results

THANK YOU!

DJ.Kusterer, A.Bayo, S.Alis, G.Micheva GCs and LMXBs in M87