The History and Basic Properties of Quasars

Patrick S. Osmer
The Ohio State University
Latin American Astronomy Summer
School 2005

Outline

- Discovery and history
- Basic Properties
 - Luminosities
 - Radio Emission
 - SEDs: radio to gamma rays
 - Spectra
 - Masses
 - Taxonomy
 - Conceptual model

References

- Bradley Peterson 1997, "An Introduction to Active Galactic Nuclei" (excellent text)
- Robinson, Schild, and Schucking 1965, "Quasi-stellar Sources and Gravitational Collapse" (Proc. of 1st Texas Symposium)
- 2005 Elba conference on "Superunification of Active Galactic Nuclei," (current status) http://www.arcetri.astro.it/~agn2005/

History: Quasars

- 1963, Identification of 3C273
 - Work of Schmidt, Hazard, others
 - 3C273 distinctive for its high redshift, inferred luminosity (100×L_{Milky Way}), star-like nature
- Quasars: "Starlike objects of large redshift," early definition by Schmidt, still conceptually useful

History: Seyfert Galaxies and Active Galactic Nuclei

- It was later realized that galaxies with bright, compact nuclei showing highexcitation, broad emission lines had been discovered much earlier (e.g., Fath 1908, Seyfert 1943)
- Now understood to be lower luminosity versions of quasars
- Today, "Active Galactic Nuclei (AGN)" refers to the whole class of objects

History: Radio Sources

- Discovery of extragalactic radio sources, e.g., Cygnus A (Bolton & Stanley 1948; Baade & Minkowski 1954)
- Recognition of the energy problem, Burbidge (1958-59): up to 10⁶⁰ ergs in radio lobes, far more than could be accounted for by normal sources
- Increasing accuracy of radio source positions, identification of 3C273 from lunar occultation (Hazard, Mackey, Shimmins 1963)

Quasars: The Breakthrough and Mystery

- Schmidt (1963) realizes 3C273 has redshift = 0.16
 - If cosmological, 3C273 has 100× luminosity of Milky Way, but looks starlike
 - Furthermore, Smith and Hoffleit (1963) find it to vary on timescales of months
- Mystery how to produce so much luminosity in such a small volume?

Spectrum of 3C273 from which its redshift was found (Schmidt)

Summer School 2005

Time Magazine 1966

Latin American Astronomy Summer School 2005

Gravitational Energy to the Rescue

- Thermonuclear reactions in stars are insufficient
- Within the first year Zeldovich & Novikov (1964) & Salpeter (1964) realized that accretion onto a massive compact object could liberate 10% of the rest energy of material falling toward a compact object (today, black hole)

Properties of Quasars

- Schmidt definition (updated to present)
 - Star-like object, sometimes identified with radio source
 - Variable continuum flux (days to months)
 - Large UV flux (compared to most stars)
 - Broad emission lines (≥ 5000 km/s FWHM)
 - Large redshifts ($z \le 6.4$)
 - X-ray sources (may be the key property)

Spectral Energy Distributions, from Peterson 1997; data from Elvis et al. 1994

Figure 6.3. Average total spectrum (thick black line) and main components (thin grey lines) in the X-ray spectrum of a type I AGN. The main primary continuum component is a power law with an high energy cut-off at $E \sim 100-300$ keV, absorbed at soft energies by warm gas with $N_H \sim 10^{21}-10^{23}$ cm⁻². A cold reflection component is also shown. The most relevant narrow feature is the iron $K\alpha$ emission line at 6.4 keV. Finally, a "soft excess" is shown, due to thermal emission of a Compton thin plasma with temperature $kT \sim 0.1-1$ keV.

FRII Radio Source, from Peterson 1997

Mass Estimates

- Woltjer (1959), Seyfert Galaxies
 - Applied virial argument, M ≈ v² r / G
 - Leads to values of about 10⁹ solar masses
- Peterson (see Elba conference), Reverberation mapping
 - Use "light echo" concept to determine size of emission-line region
 - Combine with spectra and above virial argument
 - Modern values of 10⁷⁻⁹ solar masses, depending on the object

Vestergaard 2005

Elba conf.

Taxonomy

- AGNs: Objects powered by accretion onto supermassive black holes
- Quasars: AGNs with $M_B < -23$, $L_X > 10^{44}$ erg/s
- Seyfert Galaxies: AGN with lower luminosities than quasars, visible hosts
 - Seyfert 1s: Broad permitted emission lines, narrow forbidden lines
 - Seyfert 2s: No broad permitted emission lines

Schematic model of AGN (Urry & Padovani 1995)

Summary

- Advances in radio astronomy led to discovery of quasars
 - even though their radio output is a small fraction of their total luminosity
 - even though radio is at the low end of the electromagnetic energy spectrum, radio emission was produced by the synchrotron mechanism and opened up the field of highenergy astrophysics

- Lessons still valid today:
 - Observations in new wavelength region led to discovery of new phenomena in the universe
 - Accurate positions, observations at other wavelengths needed to identify and characterize the new objects
 - Concurrent advances in theory produced understanding of the nature of the objects

- Discovery of quasars changed our view of the universe
 - Opened up study of distant universe
 - Led to the realization that massive black holes exist in the universe
 - Gravitational energy as source for quasars and all AGNs