

Hubble Telescope Unique Characteristics

- ·High spatial resolution: 0.05 arcsec
- UV sensitivity
- ·Low, stable background (no atmos.) → faint detection limits
- Stable detectors & point spread function (PSF)

..... So, what are the most important discoveries and results that HST has produced?

High Impact Papers*

(J. Madrid, STScI)

^{*} The 200 most highly cited papers published that year

Hubble Discoveries*

Most Important Scientific Results:

- 1) Determined from SNe Ia supernovae distances that universe is accelerating
- 2) Detected distant galaxies at very high redshifts before Hubble sequence formed
- 3) Characterized (age & composition) previously unresolved stellar populations
- 4) Spectroscopic detection of atmosphere of planet around another star
- 5) Measured masses of black holes in centers of galaxies
- 6) Characterized environment & optical properties of Gamma Ray Bursters
- 7) Mapped dark matter from gravitational arcs (associated with galaxies)
- 8) Observed unusual solar system phenomena
- 9) Resolved host galaxies of quasars
- 10) Demonstrated association between disks and jets, and that disks around young stars are common

Others: Evolution of IGM from QSO absorption lines

Determination of Hubble Constant (H_o = 75 km s⁻¹ Mpc⁻¹)

UV spectroscopy of the ISM, nebulae, winds, & galaxies

^{*}A significant component of many Hubble discoveries has been observations made by other telescopes.

Hubble Discoveries*

Most Important Scientific Results:

- 1) Determined from SNe Ia supernovae distances that universe is accelerating
- 2) Characterized (age & composition) previously unresolved stellar populations
- 3) Detected distant galaxies at very high redshift before Hubble sequence formed
- 4) Spectroscopic detection of atmosphere of planet around another star
- Measured masses of black holes in centers of galaxies
- 6) Characterized environment & optical properties of Gamma Ray Bursters
- 7) Mapped dark matter from gravitational arcs (associated with galaxies)
- 8) Observations of unusual solar system phenomena
- 9) Resolved host galaxies of quasars
- 10) Demonstrated association between disks & jets, and that disks around young stars are common

Others: Evolution of IGM from QSO absorption lines

Determination of Hubble Constant (H_o = 75 km s⁻¹ Mpc⁻¹)

UV spectroscopy of the ISM, nebulae, winds, & galaxies

^{*}A significant component of many Hubble discoveries has been observations made by other telescopes.

Extra-Solar Planets (Exoplanets)

Globular Cluster 47 Tucanae

Ground • AAT

NASA and R. Gilliland (STScl) STScl-PRC00-33

Hubble Space Telescope • WFPC2

▶ From known exoplanet systems, one expects 17 transits with △m>0.01 mag (Jupiter-like) among the 30,000 stars.

Planet Eclipsing Star HD 209458

Star: HD 209458

HD 209458 Spectrum

(Spectrum of star during transit)
(Normal spectrum of star)

Jets & Disks

Jets from Young Stars

HST · WFPC2

PRC95-24a · ST Scl OPO · June 6, 1995 C. Burrows (ST Scl), J. Hester (AZ State U.), J. Morse (ST Scl), NASA

The Dynamic HH 30 Disk and Jet

HST • WFPC2

300 light Ars

Resolved Stellar Populations:

Ages, Abundances, Mass function

NGC 205

M31

M32

M31 G1 (Mayall II)

Palomar Observatory Sky Survey

Hubble measures the age of the stellar halo in a neighboring spiral galaxy

HST finds a surprisingly young population of stars in the halo of the nearest galaxy resembling the Milky Way.

Line of sight

Andromeda galaxy 2.5 million light-years from the Milky Way

Sun

Milky Way galaxy (artist's concept)

Stellar temperature

Theoretical Color-Magnitude Diagram (CMD) for Star Clusters

CMD Comparison of Milky Way Bulge with Globular Clusters

Stars in M31 halo have a wider age range (6–13 billion years) than those in the Milky Way halo (11–13 billion years).

Open Cluster NGC 6791

Massive Black Holes in the Centers of Galaxies

Hubble Black Hole Measurements: Two Methods

Gas Disk in Nucleus of Active Galaxy M87

Hubble Space Telescope Wide Field Planetary Camera 2

Spectrum of Gas Disk in Active Galaxy M87

Hubble Space Telescope • Faint Object Spectrograph

Hubble Space Telescope

STIS

Galaxies Possibly Containing Black Holes

Correlation Between Black Hole Mass and Bulge Mass

