Detection of filament of warm intergalactic baryons

L. Zappacosta¹

F. Mannucci², R. Maiolino³, R. Gilli³, A. Ferrara³, N. M. Nagar³, A. Finoguenov⁴, D. J. Axon⁵

- 1. Universita' di Firenze, Dipartimento di Astronomia e Scienza dello Spazio
- 2. Centro per l'Astronomia Infrarossa e lo studio del mezzo interstellare (CAISMI)
 - 3. Osservatorio Astrofisico di Arcetri
 - 4. Max-Planck-Institut für extraterrestrische Physik
 - 5. Department of Physical Sciences, University of Hertfordshire

Recovering the local baryons

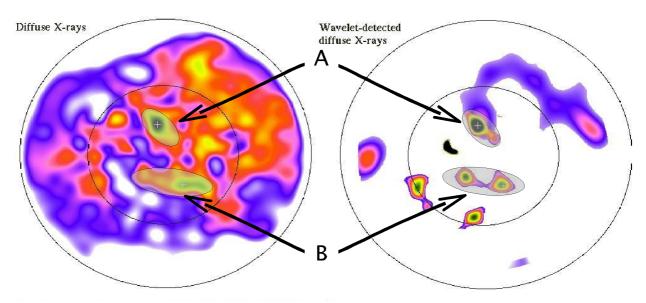
•Mismatch between abundances of high-redshift baryons (*Rauch et al. 1997; Burles and Tytler 1998*) and local baryons (*Fukugita et al. 1998*) $\Omega_h^{z=0} \sim 1/4 \Omega_h^{high-z}$

•Cosmological simulations (e.g. *Cen & Ostriker 1999*) predict the formation at low redshift of filamentary baryonic structures with temperatures 10⁵-10⁷K and low overdensities. That phase could constitute the main reservoir of missing baryons.

Warm/Hot Intergalactic Medium (WHIM)

- soft X-ray emission, but difficult to detect low brightness, lot of foreground and background
- •so far only a few temptative detection in emission

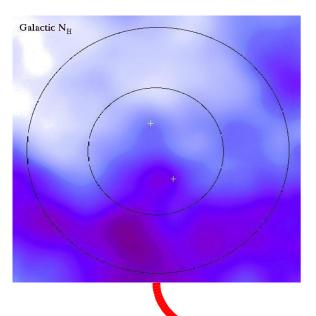
 Scharf et al. 2000, Bagchi et al. 2002, Soltan et al. 2002


Our Project

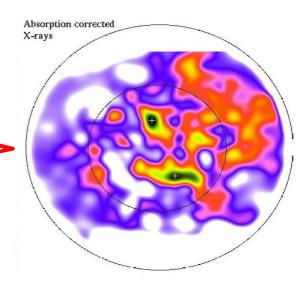
Field with low N_H (<10²⁰cm⁻²) where *Warwick et al. 1998* detected diffuse filamentary structures on several partially overlapping **ROSAT PSPC pointings**.

Goals:

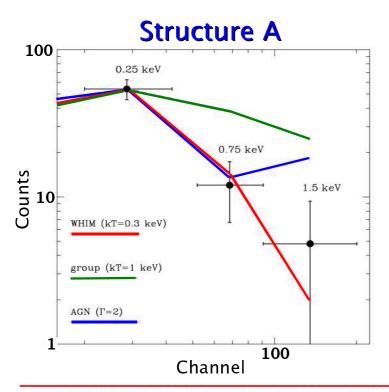
- detection of diffuse emission
- measure of the spectral shape
- •correlation with galaxy overdensity
- photometric redshift of the correlated structures


Rosat Maps

- •Structures found on a 20 ksec ROSAT pointing after the point source removal
- 2 different detection methods
- •the 2 main structures will be taken in consideration


Structures in common are significant at 5σ

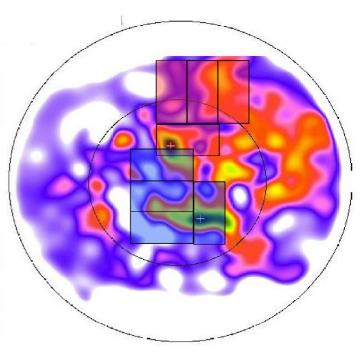
HI Map



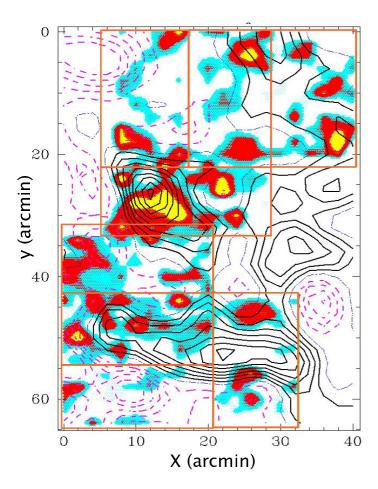
- Obtained at Effelsberg 100m radiotelescope
- Low N_H
- No anticorrelation with x-ray structures
- the correction changes only the relative intensities of the structures

Correction for hydrogen absorption

Spectral Shape and flux



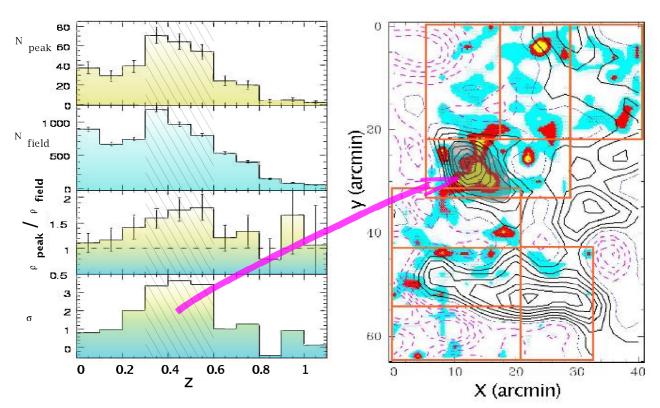
- spectrum consistent with a WHIM emission (T~3·10⁶ K)
- group and clusters are too hot (T>10⁷K)
- unresolved type I AGNs are 3σ inconsistent ($\Gamma=2$)
- structure B shows a softer spectrum


The 0.2-0.3 keV flux is in good agreement with the simulations (*Croft et al. 2001*).

Optical Data

- observations with the Wide Field Camera at Isaac Newton Telescope
- •2 slightly overlapping pointings covering the main structures
- •images in 5 photometric bands

Overdensity


x-ray/optical comparison

- contours: x-ray intensity
 mean: blue dot-dashed (6x10⁻³ counts s⁻¹ arcmin⁻²)
- colors: projected density of galaxies
 - -mean: cyan (4.7 galaxy arcmin⁻²)
- boxes: Wide field ccd arrays

The central x-ray structure is traced by a galaxy overdensity

(probability of random coincidence <1%)

Photometric redshifts

The overdensity is 6 significant in the range 0.3<z<0.6

Conclusions

- detection of a diffuse non virialized structure
- spectral shape consistent with the WHIM predicted by cosmological simulations
- •soft X-ray intensity consistent with models
- •correlation with galaxy overdensity at a redshift ~0.45

One of the first detections of WHIM at intermediate redshift

Future plans

- Better optical data:
 - spectroscopic redshift

- Better x-ray detection:
 - accurate temperature estimation
 - morphology informations

- Absorptions in QSO spectra of oxygen ions:
 - UV OVI (1032,1038)Å X OVII 0.574 keV, OVIII 0.653 keV
 - alternative determination of the absorber's redshift
 - estimation of other physical properties