GRAVITATIONAL MICROLENSING

New synergy between ground-based observations, space observations and theory

David Valls–Gabaud

CNRS, Observatoire Midi-Pyrénées, Toulouse, France

dvg@ast.obs-mip.fr

Structure evolution and cosmology Santiago de Chile, October 2002

CONTENTS

- I. A quick summary of basic concepts in microlensing
- **II.** Galactic structure : halo & bar properties
- **III.** Nature of lenses : problems
- **IV.** Gravitational imaging of stars : unveiling photospheres
- V. Prospects

GRAVITATIONAL MICROLENSING : THE CONCEPT

Simple test cases with a Schwarzschild lens

- Simulated event with impact parameter 0.20
- Simulated event with impact parameter 0.05

• Event at 0 impact parameter (the Chwolson/Link/Einstein ring)

BASIC CONCEPTS IN MICROLENSING

BASIC CONCEPTS IN MICROLENSING

Magnification of a point source by a Schwarzschild lens

$$A_p(t) = (y^2 + 2)/y\sqrt{y^2 + 4}$$

$$y = \sqrt{\alpha_p^2 + (t - t_o)^2/t_E^2}$$

BASIC CONCEPTS IN MICROLENSING

Magnification of a point source by a Schwarzschild lens

$$A_p(t) = (y^2 + 2)/y\sqrt{y^2 + 4}$$

$$y = \sqrt{\alpha_p^2 + (t - t_o)^2/t_E^2}$$

$$\begin{split} & \pmb{\alpha_p} = \theta_p / \theta_E & \text{minimum impact parameter (at } t = t_o) \\ & t_E = D_{OL} \times \theta_E / v_\perp & \text{time scale} \\ & \theta_E = \sqrt{(4GM_L/c^2) \cdot (D_{LS}/D_{OL}D_{OS})} & \text{Angular Einstein radius} \end{split}$$

Expected ML event properties :

1 - symmetric in t $4 - \forall \text{ position} \in \text{HRD}$ 2 - achromatic $5 - \text{uniform distribution of } \alpha_p$ 3 - unique $6 - \tau \text{ uncorrelated to } A_p(t_o)$

Expected number of events : optical depth

$$\overline{\tau} = \int_{o}^{D_{OS}} d\ell \ \pi \ \theta_E(\ell)^2 \ \ell^2 \ \frac{\rho(\ell)}{M_L}$$

i. does not depend on M_L , just on the spatial density along l.o.s. *ii.* number of events : $N_{events} = \left(\frac{T}{t_E}\right) \epsilon(t_E) \tau N_*$

Is it a new type of variable star ?

ML characteristic features :

1	au of days/months
2	non periodic
3	amplitude of some 0.1 $10^{\pm 1}$ mag
4	achromatic

5	symmetric
3	Symmetric

variability	violates	
type	criteria #	
pulsating stars	245	
binaries	2	
flares	145	
spots	24	
outbursts	345	
envelope ejections	4? 5	

Microlensing surveys : a quick summary

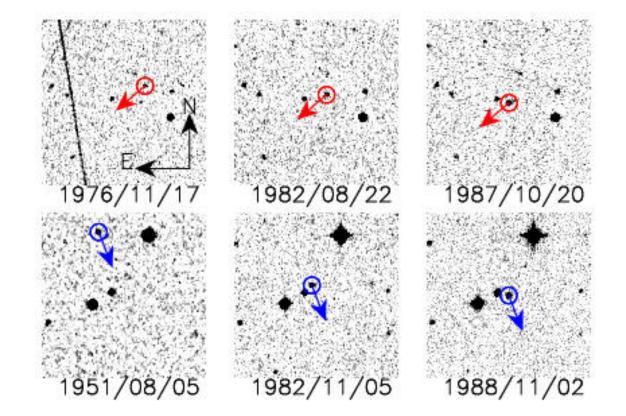
Progran	n	$N_{*} / 10^{6}$	Δt	events
EROS1 (LMC)	Schmidt	2	11 months	2
	CCD	0.02	11 months	0
EROS2	LMC	25.5	3 years	5
	SMC	5.3	3 years	1
	arms	9.1	3 years	7
МАСНО	LMC	11.9	5.7 years	13–17
	SMC	8.2	4 years	2
	Bulge	17	3 years	99
OGLE II	Bulge	20.5	3 years	314
DUO (plates)	Bulge	12	6 months	12
POINT-AGAPE	M31	pixel lensing	3 seasons	3+139 ?
MEGA+VATT	M31	pixel lensing	5 seasons	6 ?

Partial list of results on $\overline{\tau}$

Observations towards the Large Magellanic Cloud :

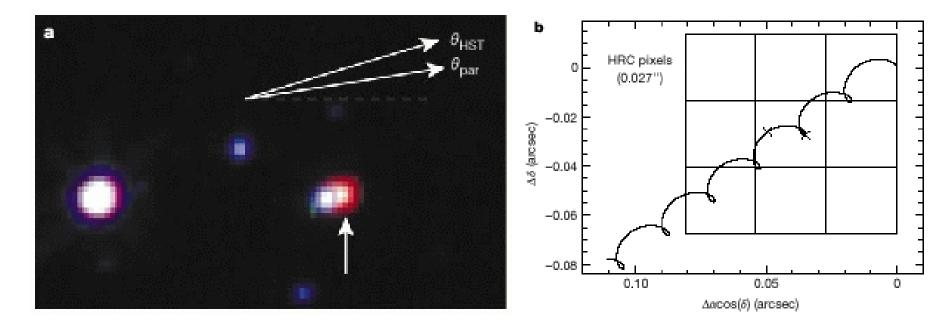
 $\overline{\tau}_{\text{LMC}} \sim (1.2^{+0.4}_{-0.3}) \times 10^{-7} \ (\pm 25\% \text{ syst})$ MACHO 13-17 events

More than expected from known stellar populations but about 20% of a full halo..


Observations towards the Galactic Bulge :

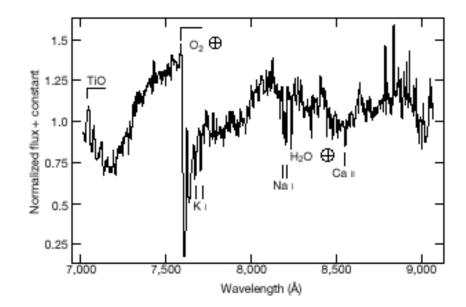
 $\overline{\tau}_{\text{bulge}} \sim (3.3 \pm 1.2) \times 10^{-6}$ OGLE 9 events $\overline{\tau}_{\text{bulge}} \sim (3.23 \pm 0.5 \times 10^{-6})$ MACHO 99 events a factor 3 larger than expected from a spherical bulge

WHAT ARE THE LENSES ?


Inferred typical mass of 0.2 M_{\odot} (but large dispersion: 0.01 to 0.9 M_{\odot}) M dwarfs Far too few, even in thick disc Black holes Unless top heavy IMF, not enough of them White dwarfs But galaxies would be too bright at high z

Yet evidence for a white dwarf population in the halo ?

Ibata et al. (2000), Méndez & Minniti (2001)


TOWARDS DIRECT DETECTIONS

combining HST (imaging) + VLT (spectra)

FORS2 spectra at VLT

- Call blend of LMC star (F type) plus lens
- Presence of KI, Nal but absence of TiO (7100Å), VO \implies M4-5 V

Alcock et al. (2001) Nature 414, 617

GRAVITATIONAL IMAGING OF STARS

Compare the stellar angular radius to the Einstein radius :

$$\theta_* = 0.0465 \left(\frac{R_*}{10R_{\odot}}\right) \left(\frac{D_{OS}}{\text{kpc}}\right)^{-1} \text{milliarcsec}$$

$$\boldsymbol{\theta_E} = 0.902 \left(\frac{M_L}{0.1M_{\odot}}\right)^{1/2} \left(\frac{D_{OS}}{\text{kpc}}\right)^{-1/2} \cdot \left(\frac{D_{LS}}{D_{OS}}\right)^{1/2} \left(1 - \frac{D_{LS}}{D_{OS}}\right)^{-1/2} \text{m.a.s}$$

O Expected number of transit events : $\mathcal{F} = \langle \theta_* \rangle \times \langle \frac{1}{\theta_E} \rangle$

When $D_{LS} \ll D_{OS}$ the sources are not point-like, and some subtle effects may appear

O Magnification of extended sources

$$\boldsymbol{A_{ext}}(\theta) = \int_{\underline{\Omega}} d\boldsymbol{\varpi} \ B(\boldsymbol{\varpi}) \ A_p(\theta) \ / \ \int_{\underline{\Omega}} d\boldsymbol{\varpi} \ B(\boldsymbol{\varpi})$$

$$\begin{aligned} \alpha_* &= \theta_* / \theta_E \\ \gamma &= \theta / \theta_* \\ x &= r / R_* = \theta_r / \theta_* \end{aligned}$$

$$\begin{split} \boldsymbol{A_{ext}}(\gamma) &= \left[\int_{o}^{2\pi} d\phi \int_{o}^{1} dx \cdot x \cdot B(x) \cdot A_{p}(p\alpha_{*})\right] \left[2\pi \int_{o}^{1} dx \cdot x \cdot B(x)\right]^{-1} \\ \text{with } p^{2} &= \gamma^{2} + x^{2} + 2 \cdot \gamma \cdot x \cos \phi \end{split}$$

① Uniform brightness profile If B(x) = constant, then for $\gamma = 0$:

$$A_u^{\max} = \left(1 + 4/\alpha_*^2\right)^{1/2}$$

2 Point source limit $\gamma \gg 1 \Longrightarrow p^2 \approx \gamma^2 \Longrightarrow$

$$A_p(\gamma) = (y^2 + 2)/y(y^2 + 4)^{1/2} \qquad \qquad \text{with } \gamma \alpha_* = \theta/\theta_E = y$$

3 Actual stars : limb darkening profiles

→ chromatic effects due to differential amplification across the disc

SPECTROSCOPIC EFFECT

• Milne–Eddington approximation (Chandrasekhar, 1947) :

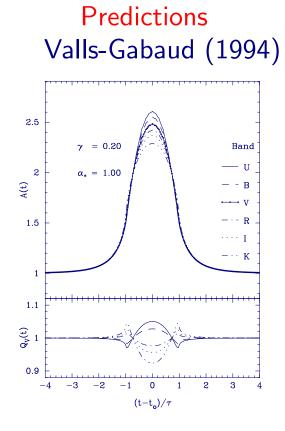
$$\rho = \sigma / [\sigma + \kappa_c]$$
$$\beta_{\lambda} = \kappa_{\lambda} \phi_{\lambda} / [\sigma + \kappa_c]$$
$$\wp = [1 - \rho + \epsilon \beta_{\lambda}] / [1 + \beta_{\lambda}]$$

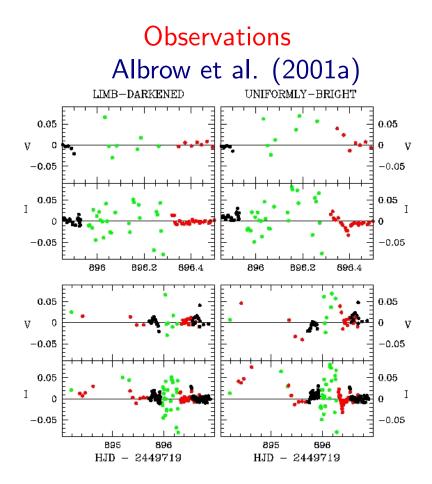
If $B_c = a + b\tau$ and $B_{\lambda} = a + p_{\lambda}\tau_{\lambda}$ and \wp, ϵ and ρ are constants, then :

$$I_{\lambda}^{o}(\mu) = (a + p_{\lambda}\mu) + \frac{(p_{\lambda} - \sqrt{3}a)(1 - \wp)}{\sqrt{3}(1 + \sqrt{\wp})(1 + \sqrt{3\wp}\mu)} \text{ and } I_{c}^{o}(\mu) = a + b\mu$$

Two extreme cases :

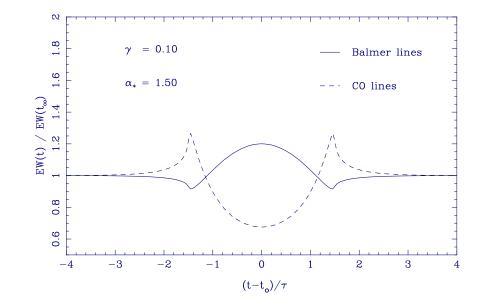
 \bigcirc Resonance line : $\epsilon = 1$ and $\wp = 1$

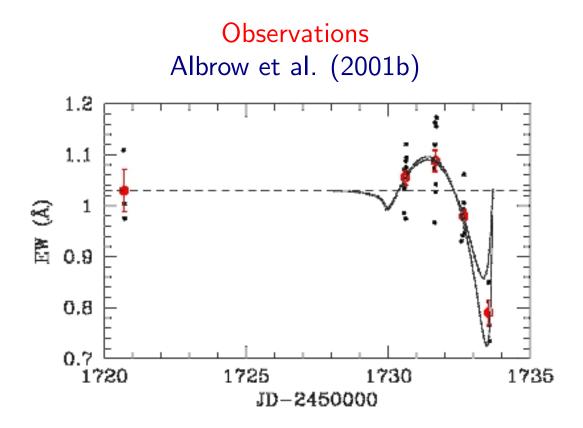

$$r_{\lambda} = \frac{I_{\lambda}^{o}(\mu)}{I_{c}^{o}(\mu)} = \frac{1 + (b/a)(\mu/[1+\beta])}{1 + (b/a)\mu}$$


when $\mu \to 0$, then $r_{\lambda} \to 0$ and the line vanishes at the limb...

• Strong scattering line : $\epsilon = 0$ and $\beta_{\lambda} \to \infty$ then $\wp \to 0$

thus $\forall \mu$: $I^o_\lambda(\mu) \to 0$ and the centre of the line remains dark at all positions across the stellar disc


CHROMATIC EFFECTS IN MICROLENSING EVENTS



SPECTROSCOPIC EFFECTS IN MICROLENSING EVENTS

Predictions Valls-Gabaud (1994)

SPECTROSCOPIC EFFECTS IN MICROLENSING EVENTS

Basic idea (Crotts 1992, Baillon et al. 1993)

Basic idea (Crotts 1992, Baillon et al. 1993)

1. External galaxy, with $\mathcal{O}(10^{10})$ sources and proper halo :

 \implies many more events expected for given MACHO abundance

Basic idea (Crotts 1992, Baillon et al. 1993)

1. External galaxy, with $\mathcal{O}(10^{10})$ sources and proper halo :

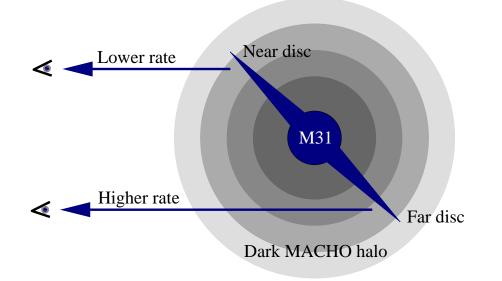
 \implies many more events expected for given MACHO abundance

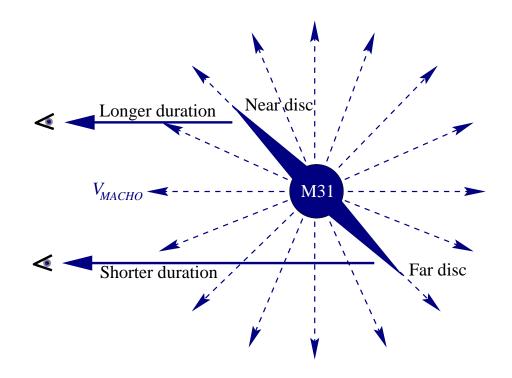
2. Additional line of sight through the Galactic halo :

 \implies disentangle self-lensing interpretations for LMC/SMC

Basic idea (Crotts 1992, Baillon et al. 1993)

1. External galaxy, with $\mathcal{O}(10^{10})$ sources and proper halo :

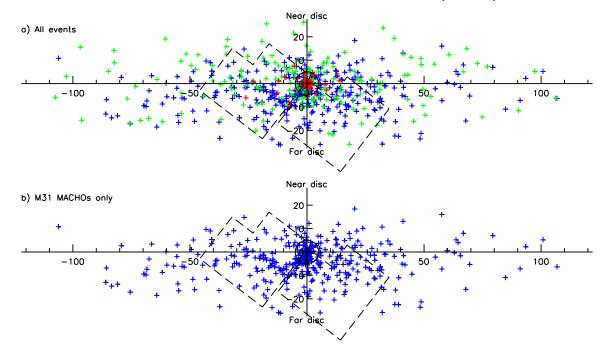

→ many more events expected for given MACHO abundance


2. Additional line of sight through the Galactic halo : \implies disentangle self-lensing interpretations for LMC/SMC

3. External viewpoint :

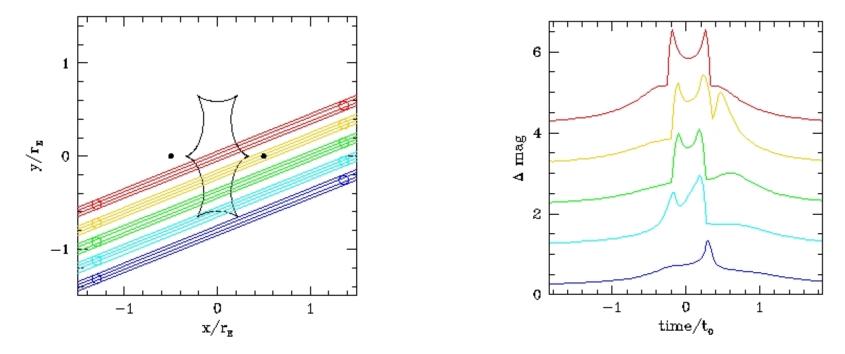
 \implies mapping the MACHO spatial distribution across M31

4. Inclination $(i = 77^{\circ}) \implies$ gradient in ML rate \implies unique spatial asymmetry (if roundish halo)

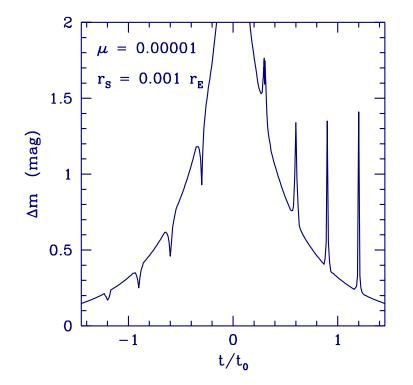


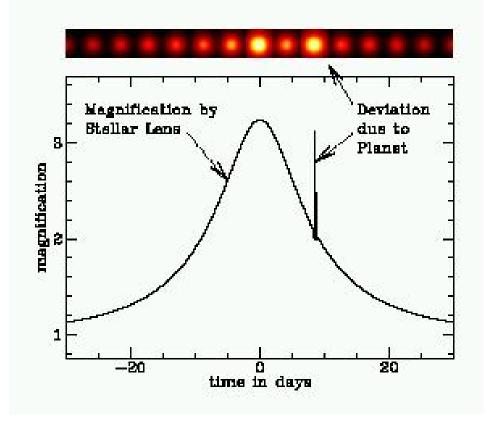
5. Constraints on velocity distribution function of MACHOS :
→ near/far timescale asymmetry if strong radial anisotropy

MACHOS IN M31 BY PIXEL LENSING : THE POINT-AGAPE SURVEY

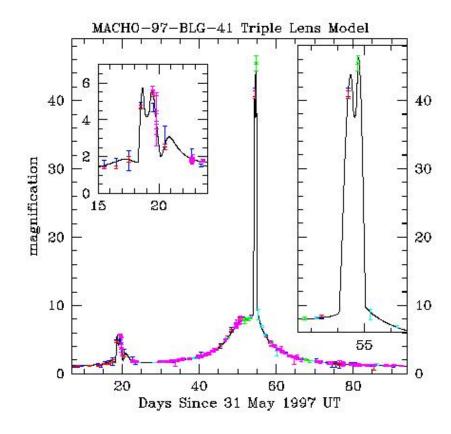

WFC at INT : large field, same instrument (same systematics), 3 seasons

Expected events : Monte Carlo simulations, Kerins et al. (2001) MNRAS 323 13

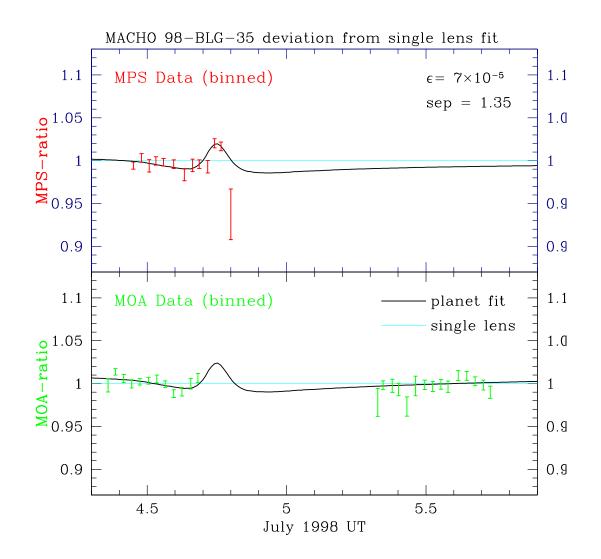


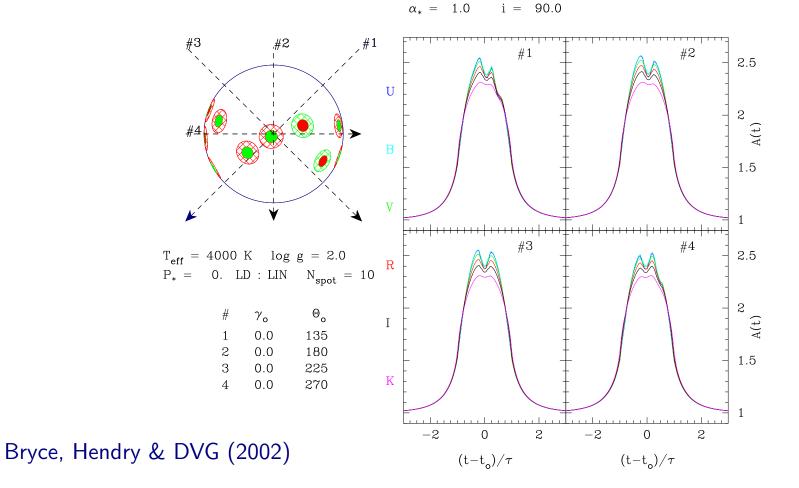

FROM SIMPLE TO WORSE, YET INTERESTING

The zoo of binary lenses



Binary events lift partially the degeneracy between mass and distance




A possible 3.5 M_J planet at 7 AU in a binary system

Bennett et al. (1999) Nature 402 57

CONTAMINATION BY STELLAR SPOTS ??

SUMMARY

Results

- 0. Unambiguous detection of ML events within the Local Group
- 1. MACHOs may account for about 20% of the mass of the halo
- 2. The Galactic bulge is barred
- 3. First imaging of stellar photospheres

Prospects

0. Upgraded ML setups (SUPERMACHO) / / dedicated telescopes (OGLE-III)

1. Increase LMC statistics to get proper constraints on f_{halo} and m_L : microlensing optical depth τ maps and mass function of lenses

2. Nature of lenses? Very long timescale events?

 3. Control experiments : M31 (AGAPE) : essential to understand nature of DM haloes GAIA : ML vs dynamical estimates of DM

Implications

Nature of the lenses : compact baryonic dark matter vs diffuse lukewarm baryons in clusters ?

Finite size effects : gravitational imaging : stellar atmospheres

Massive databases of stellar variability : stellar structure and evolution

Distant (?) future : dedicated telescope in orbit : no degeneracy

No light, but rather darkness revealed

Milton