
mm Interferometry: Imaging

S.Guilloteau (IRAM/ESO)

ALMA European Project Scientist

Bibliography:

• “Synthesis Imaging”. Proceedings of the lectures from NRAO summer school. Eds
R.Perley, F.Schwab & A.Bridle.

• “ Proceedings of the IMISS2”. Ed. A.Dutrey

• “Interferometry and Synthesis in Radio Astronomy”. R.Thompson, J.Moran &
G.W.Swenson, Jr.

ESO - Chile / January 2002 mm Interferometry: Imaging 1



Fourier Transform and Related Approximations

• The Complex Visibility is

V = |V |eiφV =

∫
Sky

A(σ)I(σ)e−2iπνb.σ/cdΩ (1)

• Let (u, v, w) be the coordinate of the baseline vector, in units of the observing
wavelength ν, in a frame of the phase tracking vector so, with w along so. (x, y, z)
are the coordinates of the source vector s in this frame. Then

νb.s/c = ux + vy + wz νb.so/c = w

z =
√

1− x2 − y2 dΩ =
dxdy

z
=

dxdy√
1− x2 − y2

(2)

V (u, v, w) =

∫ +∞

−∞

∫ +∞

−∞
A(x, y)I(x, y)

e−2iπ(ux+vy+w(
√

1−x2−y2−1))

√
1− x2 − y2

dxdy (3)

with I(x, y) = 0 when x2 + y2 ≥ 1
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Field of View: 2-D Fourier Transform

• If (x, y) are sufficiently small,

(
√

1− x2 − y2 − 1)w ' 1

2
(x2 + y2)w ' 0 (4)

and Eq.3 becomes

V (u, v) =

∫ ∫
B(x, y)I(x, y)e−2iπ(ux+vy)e−iπ(x2+y2)wdxdy

with B(x, y) =
A(x, y)√

1− x2 − y2
(5)

i.e. basically a 2-D Fourier Transform of BI , but with a phase error term
π(x2 + y2)w.

• We want |π(x2 + y2)w| � 1 in all circumstances. Noting that
w < wmax = Bmax/λ ' 1/θs, we can show that for a maximum phase error of 6◦, this
limits the field of view to θf < 0.35

√
θs (in radians...).
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Field of View: Bandwidth Smearing

• Assume u, v are computed for the center frequency ν0. At frequency ν0, we have (

being the Fourier transform operator)

V (u, v) 
 BI(x, y) (6)

The similarity theorem on Fourier Transform pairs give

V (
ν0

ν
u,

ν0

ν
v) = (

ν

ν0
)2I(

ν

ν0
x,

ν

ν0
y) (7)

• Averaging of bandwidth ∆ν, there is a radial smearing equal to

∼ ∆ν

ν0

√
x2 + y2 (8)

and hence the constraint √
x2 + y2 ≤ 0.1

θsν0

∆ν
(9)
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Field of View: Time Averaging

• Assume observations of the Celestial Pole. The baselines cover a sector of angular
width Ωearth∆t, where Ωearth is the Earth rotation speed, and ∆t the integration time.

• The smearing is circumferential and of magnitude Ωearth∆t
√

x2 + y2, hence the
constraint √

x2 + y2 ≤ 0.1
θs

Ωearth∆t
(10)

• For other declinations, the smearing is no longer rotational, but of similar magnitude.

• Values for Plateau de Bure

θs ν 2-D 0.5 GHz 1 Min Primary
(GHz) Field Bandwidth Averaging Beam

5′′ 80 5′ 80′′ 2′ 60′′

2′′ 80 3.5′ 30′′ 45′′ 60′′

2′′ 220 3.5′ 1.5′ 45′′ 24′′

0.5′′ 230 1.7′ 22′′ 12′′ 24′′
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Array Geometry & Baseline Measurements

• Using a Cartesian coordinate system (X, Y, Z) with Z towards the pole, X towards
the meridian, and Y towards East, the conversion matrix to u, v, w isu

v
w

 =
1

λ

 sin(h) cos(h) 0
− sin(δ) cos(h) sin(δ) cos(h) cos(δ)
cos(δ) cos(h) − cos(δ) sin(h) sin(δ)

X
Y
Z

 (11)

where h, δ are the hour angle and declination of the phase tracking center.

• Eliminating h from Eq.11 gives the equation of an ellipse:

u2 +

(
v − (Z/λ) cos(δ)

sin(δ)

)2

=
X2 + Y 2

λ2
(12)

• the UV coverage is an ensemble of such ellipses. Choice of antenna configurations is
made to cover the UV plane as much as possible. Array configuration design takes
this constraint into consideration, with the restriction due to the site . . .
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Fringes: 2 —> 3 antennas

With 3 antennas:
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Fringes: 3 antennas
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Fringes: 4 antennas
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Fringes: 5 antennas
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Fringes: 6 antennas
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Aperture Synthesis
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Aperture Synthesis: Earth Rotation
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Aperture Synthesis: Earth Rotation
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Aperture Synthesis: Earth Rotation
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Aperture Synthesis: Earth Rotation
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From Visibilities to Images

• An interferometer measures the visibility function

V (u, v) =

∫ ∫
B(x, y) I(x, y) e−2iπ(ux+vy) dx dy (13)

over an ensemble of points (ui, vi), i = 1, n, where B(x, y) is the (slightly modified)
power pattern of the antennas and I(x, y) the sky brightness distribution.

• The imaging process consists in determining as best as possible the sky brightness
I(x, y).

• Let S(u, v) be the sampling function (also called spectral sensitivity function).

S(u, v) 6= 0⇐⇒ ∃i ∈ 1, n (ui, vi) = (u, v)

S(u, v) = 0⇐⇒ ∀i ∈ 1, n (ui, vi) 6= (u, v) (14)

S contains information on the relative weights of each visibility, derived e.g. from
theoretical noise.
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• Let us define

Iw(x, y) =

∫ ∫
S(u, v) W (u, v) V (u, v) e2iπ(ux+vy) du dv (15)

where W (u, v) is an arbitrary weighting function.

• Since the Fourier Transform of a product of two functions is the convolution of the
Fourier Transforms of the functions, Iw(x, y) can be identified with

Iw(x, y) = (B(x, y)I(x, y)) ∗∗(Dw(x, y)) (16)

where

Dw(x, y) =

∫ ∫
S(u, v) W (u, v) e2iπ(ux+vy) du dv

= ŜW (17)

Dw(x, y) is called the dirty beam, and is directly dependent on the choice of the
weighting function W .

Fourier Transform and Deconvolution
are thus two key issues in imaging (see Eq.16).

Back to Eq.18
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Fourier Transform

• Direct Fourier Transform

– Computes sin and cos functions directly in Eq.16 for all combinations of
visibilities and pixels in the image.

– Straightforward, but slow

• Fast Fourier Transform (FFT)

– Use the speed of FFT
– Gridding process for the visibilities
– Gridding correction for the images and beam
– Aliasing effects due to periodic function
∗ images must not be too small
∗ hopefully, B × I in Eq.16 has a finite support.
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Gridding Process

• Definition of gridding

– Goal: Re-sample the visibilities on a regular grid for subsequent use of the FFT
– General Method: Resample on the grid by some interpolation from the values of

nearest visibilities around each grid point.
– Specific Method: Use a convolution technique to perform the interpolation.

• Why a convolution ?

• From Eq.13, V = B̂I = B̂ ∗∗Î
=⇒ V is already a convolution of a nearly Gaussian function (B̂) with the FT I , Î .
=⇒ nearby visibilities are not independent.

• Exact interpolation not desirable, since original data points are noisy samples of a
smooth function. Some smoothing is desirable.

• If the width of the convolution kernel used in gridding is small compared to B̂, the
convolution added in the gridding process will not significantly degrade the
information
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Gridding Process

• By definition
Iw = I ∗∗Dw = V̂ ∗∗ŜW

• Let G the gridding convolution kernel. Eq.15 becomes

Ig
w 
 G ∗∗(S ×W × V ) (18)

Ig
w = Ĝ× (ŜW ∗∗V̂ ) = Ĝ× Iw (19)

Dg
w 
 G ∗∗(S ×W ) Dg

w = Ĝ× ŜW (20)

Ig
w

Ĝ
=

Dg
w

Ĝ
∗∗(BI) (21)

• Thus the dirty image and dirty beams are obtained by dividing the Fourier Transform
of the gridded data by the Fourier Transform of the gridding function.

Back to Eq.26
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Sampling & Aliasing

• Sampling is equivalent to multiplying by a series of delta functions, or the shah
function:

[
1

∆u
]III(

u

∆u
) =

∞∑
k=−∞

δ(u− k∆u) (22)

• The Fourier Transform of the shah function above is the shah function

III(x∆u) =
1

∆u

∞∑
m=−∞

δ(x− m

∆u
) (23)

• Hence, sampling the visibilities V results in convolving its Fourier Transform V̂ by a
periodic shah function. This convolution reproduces in a periodic way the Fourier
Transform of the visibilities V̂ .

• If the Fourier Transform of the visibilities V̂ , i.e. the brightness distribution BI , has
finite support ∆X , the replication poses no problem provided

(∆u)−1 ≥ (∆X) ∆u ≤ (∆X)−1 (24)
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Sampling & Aliasing (. . . )

• If not, data outside (∆u)−1

are aliased in the imaged area
(∆u)−1. (see Fig)

• Finite support is ensured to first
order by the finite width of the
antenna primary beam B. How-
ever, strong sources in antenna
sidelobes may be aliased if the im-
aged area is too small.

• Noise does not have finite sup-
port, because white noise in the
UV plane result in white noise in
the map plane. Noise aliasing pro-
duces an increased noise level at
the map edges.
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Convolution and Aliasing
• Combination of Gridding and Sampling produces the UV data set

Vm = 1
∆u∆v

III( u
∆u

, v
∆v

)× (G ∗∗(S ×W × V ))(u, v) (25)

= III× (G ∗∗(S ×W × V ))/(∆u∆v) (26)

which analogous with Eq.18

• The Fourier Transform of this UV data set is

V̂m = III(x∆u, y∆v) ∗∗(Ĝ× (ŜW ∗∗V̂ ))

V̂m = III ∗∗(Ĝ× (ŜW ∗∗(BI))) (27)

• Vm is thus the sky brightness multiplied by the primary beam (B I), convolved by the

the dirty beam ŜW , then multiplied by the Fourier transform of the gridding function
Ĝ and periodically replicated (by the convolution with last Shah function).

• Aliasing of Ĝ in the map domain will thus occur.

Back to Eq.29
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Convolution and Aliasing (. . . )

• Note 1: at this stage, providing that aliasing of Ĝ remains negligible, an exact
convolution equation is preserved

V̂m

Ĝ
= ŜW ∗∗BI (28)

• Note 2: aliasing of Ĝ is not completely negligible. Choice of the convolving function
must be made to minimize it.

• Note 3: The weighting function W is usually smooth, while the gridding function G
is a relatively sharp function (since it ensures the re-gridding by convolution from
nearby data points). Thus, to first order G ∗∗W = W , and we can rewrite Eq.26 as

Vm = III×W × (G ∗∗(S × V ))/(∆u∆v) (29)

i.e. the weighting can be performed after the gridding.
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Choice of the Gridding function
• The gridding function will be selected according to the following principles:

1. small support, typically one or two cells wide (∆u).
2. small aliasing.
3. fast computation.

• 1 and 2 are contradictory, since a small support for G implies a large extent of Ĝ.
Some compromise is required. Gridding functions are usually selected among those
with separable variables:

G(u, v) = G1(u)G1(v)

• Gaussian-Sinc function
Ĝ should ideally be a rectangular function (1 inside the map, 0 outside). G would be
a sinc function, but this falls off too slowly, and would require a lot of computations
in the gridding; and its truncation would destroy the sharp edges of Ĝ.

• Spheroidal functions
We actually want Ĝ to fall off as quickly as possible, but G to be support limited.
Mathematically, this defines a class of functions known as spheroidal functions.
They are solutions of differential equations, and cannot be expressed analytically.

Tabulated values are used in the task UV MAP.
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The noise problem

• Noise
Aliasing increases noise at the map edges (by aliasing and then by the gridding
correction). This amounts to (π/2)2 at map corners for the Gaussian-Sinc function.
Near the map center, the effect is negligible.
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Weighting and Tapering

• At UV table creation, the sampling function is defined as

S(u, v) =
1

σ2(u, v)
(30)

where the noise σ is computed from system temperature, bandwidth, integration
time, and effective antenna efficiency (including decorrelation).

σ(u, v) =
JITsys

ηQ

√
2∆νtint

(31)

• The weights W (u, v) can be freely chosen.

• Natural Weighting, no taper
corresponds to W (u, v) = 1. This maximizes sensitivity to point sources.

• Tapering consists in apodizing the UV coverage by T (u, v) = exp(−(u2 + v2)/t2))
where t is a tapering distance. This corresponds to smoothing the data in the map
plane (by convolution with a gaussian), and thus, to some extent increases sensitivity
to “medium size” structure.
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Weighting and Tapering

• Tapering is always throwing out some information. To increase sensitivity, use
compact arrays, not tapering. (You usually don’t want to throw away 50% of the
information...).

• Uniform Weighting consists in selecting the weights W (u, v) so that the sum of
weights

∑
W × S over a UV cell is a constant function (or zero if no UV data

exists in that cell). The size (radius) of the UV cell is an arbitrary parameter. In
practice, it should be compatible with sampling considerations (e.g. equal to half the
dish diameter).

• Uniform Weighting gives more weight to long baselines than natural weighting
(because you spend less time per UV cell on long baselines than on short baselines
for earth synthesis). Uniform Weighting produces smaller beam and sometimes
(but not always) lower sidelobes.

• Weighting and Tapering reduce point source sensitivity by√∑
T 2W 2/

∑
TW (32)
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Robust Weighting

• This is a variant of uniform weighting which avoids to give too much weight to a UV
cell with low natural weight.

• Roughly speaking, if the sum of natural weights in a cell is less than a threshold, the
weighting is unchanged, if it is more, the weight is set to this threshold.

• Robust weighting combines the advantages of Natural and Uniform weighting,
by increasing the resolution and lowering the sidelobes without degrading too much
the sensitivity.

• By adjusting the threshold, it approaches either case (large threshold ←→ Natural,
small threshold ←→ Uniform).
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Imaging Parameters
• the map size: The imageable area is normally limited by the field of view, which

is determined by the primary beam, but also by the 2-D approximation, the
bandwidth smearing, and the integration time smearing. For some deconvolution
methods, the map size should be twice larger than the imageable area.

Also, an interferometer is a spatial filter: large scale structures are not properly
measured (see Short spacing and Mosaics).

• the map cell size
The map pixel size used in gridding is a free parameter. It Should respect proper
sampling compared to the synthesized beamwidth. In practice, 3 – 4 pixels per
beamwidth are required.

• the Weight Mode
Natural weighting preserves best sensitivity. However, Robust weighting may be a
better compromise: it has two free parameters (cell size and robustness threshold).

• the Taper
No taper should be used in general, but it is often important to look at the same
data with different angular scales.

• Note that except for the weight mode and taper, the UV coverage contains
enough information to allow appropriate values to be derived.
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Good Use & Common Mistakes

• Image too small in angular size: aliasing will occur.

• Pixel size too large: synthesized beam is undersampled, leading to deconvolution
problems

• Image too big

– Waste of disk space
– Waste of computer time
– Increase numerical errors (more deconvolution iterations required)
– Increase risk of ”Insufficient memory” error message

• Poor choice of weighting and/or tapering function. It is recommended to look at
your image with two sufficiently different angular resolutions (e.g. a Robust weighting
with no taper, and a significantly tapered image).

• For spectral line observations: too many channels treated at once: data cubes get
too big. Select only the ones you need... Remember: a 256x256 (image) x 256
channels is 64 MBytes. Most image processing tasks require 3 to 8 times that in
(virtual) memory to operate
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Deconvolution: example of CLEANing

• Principle: assume the sky is dark, but full of stars.

• Method: “matching pursuit”

1. Initialize a Residual map to the Dirty map
2. Initialize a Clean component list to zero.
3. Assume strongest feature in Residual map originates from a point source
4. Add a fraction γ (the Loop Gain) of this point source to the Clean component

list, remove the same fraction, convolved with the dirty beam, from the Residual
map.

5. If strongest feature larger than some threshold, go back to point 3. If not, go to
7. Each such step is called an iteration.

6. If number of iterations Niter is too large, go to point 7. If not loop to point 3.
7. Convolve the Clean component list by a properly chosen Clean Beam, and add

the Residual map to obtain the Clean Map.
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CLEANing

• Loop Gain and Number of iterations

– 0 < γ < 2 in theory
– γ ' 0.2 in practice, depending on sidelobe levels, source structure and dynamic

range
– In theory, remaining flux ∝ (1− γ)Niter if the object is made of a single point

source...
– about ∝ (1− γ)(Niter/Nbeams) if the source extends over Nbeams (to first order...)
– Example: 500 iterations, 25 beams (i.e. only a 5× 5 beams patch):

0.8500/25 = 0.820 = 1.1% residual. You may need a large number of iterations...

• Clean Beam

– Usually Gaussian: simple to compute...
– Size should be matched to the synthesized beam
– If not, flux density estimates will be incorrect
– Restoring with a round beam is allowed
– Sometimes no proper choice (e.g. synthesized beam with narrow central peak on

top of broad “shoulder”)
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CLEAN: Interpretation

• The Clean component list is a plausible solution of the measurement equation, but
it is not unique...

• Clean image is not a solution !

• But convolution by the Clean Beam smears out artifacts due to extrapolation beyond
the measured area of the UV plane (a posteriori regularization).

• Clean Box and Support

– Only the inner quarter of a map can be properly Cleaned
– The Clean Box provides a way of minimizing the number of solutions
– A more flexible support can be used (e.g. in the Mapping program)
– Clean Box or support should not be too limited: Cleaning the noise is necessary

too...

• Negative Clean components are necessary.
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CLEAN variants

• Hogbom or SIMPLE: from the inventor himself. Only (a little bit less than) the inner
quarter of the image is properly restored.

• CLARK from B.Clark: A Major-Minor cycle approach.

– Minor cycles: Hogbom Clean on a subset of the image (pixels with high enough
absolute values), with a subset of the beam (which only includes the larger
sidelobes).

– Major cycles: Remove the cumulative list of point sources by using an FFT
– Fast, but could diverge for improper choices of the major/minor decision.

• MX (from W.Cotton and F.Schwab): As the Clark method, but the major cycle
subtraction is done in the ungridded u, v data, which is then gridded again. Can
almost CLEAN the whole image...

• Steer-Dewdney-Ito (SDI): As the Clark method, but no deconvolution is made in the
minor cycle. A simple selection and scaling is done.
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CLEAN variants ...

• Multi-Resolution Clean (MRC):

– Separate the problem into a smoothed map and a difference map
– Since the measurement equation is linear, both maps can be cleaned

independently
– The method is faster than standard CLEAN because the smooth map can be

compressed, and the smooth and difference map both contains a smaller number
of components

– the large sidelobes in the difference beam can prevent proper convergence.
– It is not applicable to Mosaics, where the measurement equation is non linear.

• Multi-Scale Clean (MULTI)

– Produce Nscale smoothed maps, with different smoothing kernels.
– At each iteration, select the component from the smoothed map which has the

highest Signal to noise ratio.
– Remove the corresponding source list for all Nscale smoothed maps.
– Very stable, but relatively slow.

ESO - Chile / January 2002 mm Interferometry: Imaging 37



Maximum Entropy Methods
• Principle: assume you now nothing about the source, and find the least biased image

which agrees with the data

• In math form, minimize
J = H − αχ2 (33)

where H is an image entropy

H = −
∑

i Ii log
(

Ii

eMi

)
maximum entropy, requires positivity

H = −
∑

i Ii log
(
cosh

(
Ii

Mi

))
maximum emptiness, does not

α a Lagrange multiplier, and χ2 is a measurement of the agreement with the data,
which can be expressed in the visibility plane as:

χ2 =
∑

j

(Îj − Vj)
2

σ2
j

(34)

(but the analogous form in the image plane could be used too)

• Numerical techniques, based on conjugate gradients, exist to solve this problem.
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MEM
• Advantages:

– MEM is relatively fast on large images.
– With the classical entropy form, it has some theoretical background in

information theory.
– In the absence of information, just gives the prior image M .

• Drawbacks:

– MEM uses no direct information about the dirty beam shape, and the
deconvolution only proceeds through a global minimum of Eq.33. MEM images
can be locally poor.

– Long baselines are usually better fitted than short baselines (they are more
numerous). A kludge is to fix the zero spacing.

– MEM will perform badly with limited u, v coverage
– The MEM image is biased toward the prior.
– The MEM image has varying angular resolution.
– MEM resolution is signal to noise dependent.
– No simple noise statistics is possible on a MEM deconvolved image: the noise in

MEM images has a non zero average.
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WIPE

• Principle: only a regularized image of the sky can be obtained

• Method: minimize

χ2 =
∑

j

(Îj − Vj)
2

σ2
j

+ α
∑

l

(Îl)
2 (35)

where j runs over the ensemble of measured visibilities and l over an ensemble of
visibilities for long baselines. α is a weight factor which can be computed from the
number of visibilities.

• To minimize the χ2, WIPE will tend to find solutions with zero visibilities on the long
baseline ensemble l.

• WIPE will thus produce a resolution limited image.

• I is constrained by a support constraint (like in CLEAN). Positivity can be enforced.

• WIPE is closer to CLEAN than to MEM: it provides a well defined angular resolution.

• WIPE is slow, and somewhat conservative regarding the level of deconvolution
performed.

• WIPE allows reconstruction errors to be quantified (in the upper limit sense).
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From Flux density to Brightness temperature

• Units of dirty map are ill defined:

– A single point source of 1 Jy appears with peak intensity of 1.
– But if more than 1 point source, combination of positive or negative sidelobes

from the other source modify this result.

• Deconvolution is thus required

– However, it is impossible to deconvolve weak structures near the noise level.
– If extended, these structures may contribute to a significant flux.
– But they in general do not contribute to a significant brightness.

• After deconvolution, the beam area is well defined

• The clean map unit is Jy per beam area

• Conversion to brightness is done using the standard equation

Sν =
2kΩs

λ2
TB =

2kπθ2
s

4 log 2λ2
TB (36)
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Accuracy of Flux density estimates

• Seeing effects:

– Point source flux underestimated
– Flux spread over the “seeing disk” =⇒ Total flux preserved

• Noise Estimate:

– Statistics on the (deconvolved) image gives the rms noise for point sources
– Avoid including map edges, since noise increases at map edges due to aliasing

and gridding
– However, for total flux, it is not sufficient to count the number of beams . . .
– UV plane analysis is preferred for simple sources.

• Do not forget primary beam correction

• Do not forget amplitude calibration uncertainty...
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Short Spacings

• Extended structure are missed, attenuated or distorted in interferometric maps by
lack of short spacing information.

• Deconvolution recovers some of them, but under-estimate the total flux because the
integral of the dirty beam is zero (no short spacing)

• Constructing a beam with a non zero integral can help deconvolution ⇒ Zero
spacing flux or spectrum.

• Short spacings provides even more information.

• Can be provided by

– A larger single dish (D > D): it measures V (u, v) up to
√

u2 + v2 = D−D

– A smaller interferometer (d < D), combined with zero spacing from the large
antennas. In the field of view of the small antennas, the large antennas measure
visibilities up to

√
u2 + v2 < D − d, the small interferometer from√

u2 + v2 > d, so if d ' D/2, full sampling of the u, v plane is guaranteed.
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Short Spacing and Mosaics

• an interferometer is a spatial filter: it is insensitive to large structures

• an interferometer has limited field of view

• To image areas of the sky larger than the field of view, Mosaicing with inclusion of
short spacing is required

• Mosaicing principle

– Make overlapping pointings with the interferometer
– Each pointing measures (after deconvolution) Ji = BiI where I is the sky

brightness
– The linear combination

J =

∑
i BiJi∑
i B

2
i

≡ I (37)

is an optimal (vis-a-vis noise) estimate of I .
– J can be corrupted by improper deconvolution of one field. Taking advantage of

the overlapping nature of the Bi would certainly help minimizing deconvolution
errors.
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Mosaic Deconvolution: i) raw image
• Linear combination, with no prior deconvolution
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Mosaic Deconvolution: Separate Deconvolution
• Linear combination after separate field deconvolution
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Mosaic Deconvolution: Joint Deconvolution
• Joint deconvolution by CLEAN adapted to mosaics (Gueth & Guilloteau 1999)
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Mosaic Deconvolution: Zero Spacing
• Inclusion of single-dish data (zero spacing) does help
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Mosaic Deconvolution: Short Spacings
• Short spacings form an array of smaller dishes (d < D) provides better information
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