
Developed C++ Action and Data classes

Model in text format

Convert model using
EA to WSF plugin

Modeling using
Rational ROSE

Modeling using
EnterpriseArchitect

Model in .mdzip format

Executable

Compiler

Modeling using Text
Editor

Generated C++ code

Model in .mdl format

Convert model using
MD to WSF plugin

Code generation using
 WSF tools

Model in .ea format

Modeling using
MagicDraw

Model in .xml format

Convert model using
WSF tool based on

openArchitectureWare

Convert model using
XML plugin

DATA
alpha
delta

ConvertAlphaDeltaToAltAz()
SetAlphaDelta()
PrepareAltitudeMessage()
PrepareAzimuthMessage()

 : Operator presetControl : Altitude : Azimuth

Preset(alpha, delta)

Preset(degree)

Preset(degree)

Operator Preset Telescope Telescope

Requirements

Requirements
Analysis

Design

IDLE WAIT

EVENT1 / ACTION

EVENT2

IDLE STEP1

entry/ ACTION1

STEP2

entry/ ACTION2

STEPn

entry/ ACTIONn

EVENT1

SKIP1EVENT2

EVENTn

SKIP2

EVENTn+1SKIPn

IDLE ITERATION

entry/ ACTION1

CONDITION

entry/ ACTION2

EVENT1

EVENT2COMPLETED

NEXT

IDLE STEP1

STEP2STEPn

EVENT2 / ACTION2

EVENTn / ACTIONn

EVENTn+1

EVENT1 / ACTION1

Catalog of State Machine Models
(State Patterns)

State
Machine

Models can
be

easily
reused.

Asynchronous
Action Pattern

Iteration Pattern Configurable
Sequence Pattern

Sequence Pattern

Generated Code

Requirements are analyzed developing scenarios.

Scenario are used to identify the system’s dynamic behavior and data handling.
Dynamic behavior is described via State Machine diagrams. Data handling is illustrated

using class diagrams.

ONLINE

IDLE PRESETTINGIDLE PRESETTINGPRESET / Preset Axes

PRESET_DONE

State Machines models are used to generate code: state machine logic, events
handling, actions skeleton.

Workstation Software Framework
A Model Driven Development Framework

L. Andolfato, R. Karban
European Organisation for Astronomical Research in the Southern Hemisphere

State machine models used to describe specific application behavior (such as sequences of commands, control
loops, etc) can be completely reused in different applications simply by re-generating the code and adding a
different implementation of the actions.

Reusability at model level has been found to be much more efficient (and easy to implement) than at class level
since the interface between generated code and user defined components is well defined by the framework.

Developed Code Libraries
.h

.C++

Actions implementation
Data implementation

C++ libs
VLT SW libs

Application

APPLICATIONS

FUTURE DEVELOPMENTS

Active Phasing Experiment (APE).

New General detector
Controller (NGC)

Data classes used to access/store values, can be generated from a class
diagram.

Code generation for the Action classes can be once the relation between
actions and events and between actions and data is known.

These relationships can be captured by a class diagram.
WSF code generation can be improved by adding a class diagram in the
model. The class diagram should describe data classes, their attributes and
the relation among data, event and action classes.

WSF has been developed for the Very Large Telescope Software platform
based on:

Linux
GNU C++
ESO VLT Software

The Workstation Software Framework (WSF) architecture is based on
solid design patterns such as:

the State design pattern to split state machine logic from action
implementation
the Template design pattern to hide event handling
a modification of the Command design pattern for the action executions

Events (commands, replies, timeouts, database notifications, file I/O
notifications, internal events) are propagated to the state machine logic
which in turn will execute the associated action (transition actions or
entry/exit actions).

ARCHITECTURE

MODEL TRANSFORMATIONS

MAINTENANCE

An application based on the Workstation Software Framework can be
maintained:

By updating the model and regenerating states, transitions and events
(without affecting data and action classes developed by the user)
By fixing bugs on actions and data classes

An application based on the Workstation Software Framework can be developed by:
Adding manually states, events, actions and data classes. Since the architecture is
based on design patterns, a WSF application can be built by extending the classes
provided by the framework.
Writing a text configuration file which describes the state machine model. A tool
provided by WSF will transform the textual representation of the model in C++ state,
event, and action classes. The developer has to complete the implementation of the
action and data classes.
Drawing the state machine model with Rational ROSE and export the model in XML
format. A tool provided by WSF (based on openArchitectureWare) will transform the
XML representation of the model in C++ state, event, and action classes. The
developer has to complete the implementation of the action and data classes.
Drawing the state machine model with EnterpriseArchitect or MagicDraw and run a
plug-in to convert the model in textual representation. A tool provided by WSF will
transform the textual representation of the model in C++ state, event, and action
classes. The developer has to complete the implementation of the action and data
classes.

WSF provides the following model transformation functionalities:
From textual representation to C++ classes
From RationalROSE XML format to textual representation using XMI plug for
RationalROSE and openArchitectureWare to convert XML model into textual
representation
From EnterpriseArchitect to textual representation via EA plug-in
From MagicDraw to textual representation via MagicDraw plug-in

.h
.C++

States classes,
Events classes,
Actions and Data
classes stubs

The Workstation Software Framework provides the following features:
It supports Moore, Mealy and Haral state machine models
It supports the History state
It uses the actions classes concept to encapsulate more than one action per class

DEVELOPMENT

FEATURES

PROCESS

SUPPORTED SOFTWARE PLATFORM

The Workstation Software Framework (WSF) is a state machine model driven development toolkit designed to
generate event driven software applications. State machine models are used to generate executables and it
provides different, versatile generation options. It supports Mealy, Moore and hierarchical state machines.
Generated code is readable and maintainable since it applies common design patterns such as the State and the
Template design patterns. The framework promotes a development process that is based on model reusability
through the creation of a catalog of state machine patterns.

STATISTICS ON CODE GENERATION

Maintenance and Alignment of
Delay Lines (DL)

Thermal Control for Auxiliary Telescopes
(ATCS)

Phase Referenced Imaging and Micro-
arcsecond Astrometry for VLTI (PRIMA).

