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1 Why Spatial Interferometry?

Over many centuries, since the times of Galileo Galilei @%642), astronomers have relied on in-
creasing the size of their telescopes to improve the quallitie observations. Telescope diameters have
grown from Galileo’s telescope with a few centimetres todheent 10-m class of telescopes represented
by the Keck Telescopes and ESO’s Unit Telescopes. In altithis, the basic idea has not changed: the
telescope as an optical system produces an image in thedlaced that is taken as a representation of
the object shape.

In the 19th century, Hippolyte Fizeau (1819-1896) suggetbeimprove the measurement of stel-
lar diameters by masking the telescope aperture with twdl gsimooles. Light passing through these
pinholes would then interfere in the telescope focal pladence the ternspatial interferometry The
first successful measurement using this principle was pegd by Albert A. Michelson and Francis G.
Pease in 1920 determining the diametest@rionis to 0.047 arcsec. This was at at time when the small-
est diameter that could be measured with a full aperture Wastdl arcsec, equivalent to the angular
resolution of the telescope.

Although the measurement of a stellar diameter is not theesean image, the dramatic increase in
angular resolution sparked enough interest in the new rdetbdhat it was soon understood how such
contrast measurements with different pairs of pinholedferéint in separation and orientation — can be
combined to form a high resolution image not only of starsdfwiny type of object.
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Figure 1: Comparison of the image quality on an 8-m teleset@® observing wavelength ofi2n. On

the left, the seeing limited image is displayed for a seeiin@.® arcsec. In the middle, the diffraction
limited image of an 8-m telescope with adaptive optics issshoOn the right, the reconstructed image
of a spatial interferometer with a baseline of 100 m dematestrthe improvement over single telescope
observations. These images are only simulations for casganf the achievable angular resolution.
Especially for spatial interferometers, an image with @nisount of detail and this size has yet to be
achieved.

However, due to insurmountable technical problems withnigehanical stability at larger pinhole
separations, spatial interferometry was abandoned inatiee1920’s. It took until 1974 when Antoine
Labeyrie combined the light from two independent telessdpestead of two pinholes in one telescope)
demonstrating that spatial interferometry was feasible.

Over the last decade, high angular resolution methods hatared considerably so that spatial
interferometry and adaptive optics (see experiment agaiptics) have become standard observing
techniques, and spatial interferometry has gone beyonthéasurement of stellar diameters. However,
it is still a long way to go before 'real’ high resolution imegas in Fig. 1 can be produced.



2 Introduction

There are mainly two parameters determining the perforemahastronomical observations: sensitivity
and angular resolution. The sensitivity increases withtétescope size, with larger telescopes simply
collecting more photons. The angular resolution dependketelescope diameter if the telescope image
is diffraction limited. To achieve this, the optical abdiwas of the telescope have to be smaller than the
diffraction effects, and an adaptive optics system has tavaédable to eliminate the image blur due to
atmospheric turbulence.

Without adaptive optics the angular resolution of even Hrgdst telescopes in the 10-m class is
equivalent to that with telescopes of 10-cm (in the visilde)l-m (in the near infrared) diameter. Then
the resolution is calledeeinglimited and its value is called the seeing. The advent oabdi adaptive
optics systems at the end of the 1990s was a big step forwardaising the angular resolution from
about 0.5 arcsec to 50 milli arcsec in the near infrared (sgell

However, even today’s largest telescopes cannot resoltarés on the surface of individual stars.
The diffraction limit is still so much larger than the stahat their images in the telescope focus are
undistinguishable from point sources. For example, thal@ngesolution of 50 milli arcsec is only just
about the angular size of Betelgeuse, the biggest starr(istef angular size as seen from the Earth) in
our galaxy.

Switching together individual telescopes to forrapatial interferometethe resolution is no longer
determined by the individual telescope diameter but by thtadce between the telescopes, called the
baseline, BCombining two 8-m telescopes that are separated by130 m, like the Unit Telescopes
of ESO’s VLT| improves the angular resolution by a factobaieline/telescope diameterl30/8 = 16
to about 3 milli arcsec. Then, a large number of stars can d$mvwed revealing their shape that is not
necessarily circular (see front page with the reconstdusteape of Achernar on the left). Thus, with
spatial interferometry, stars will never be points again.

This improvement, however, comes for a price. First, onetbakd many observations at different
baselines, different in length and orientation, to achevémage quality as in Fig.1. Second, in spatial
interferometry as in adaptive optics one needs a brightegsiidr to eliminate the effects of atmospheric
turbulence in order to be able to observe faint objects. &Sine guide star has to be within 1 arcmin of the
faint object, the number of faint objects that can be obskiwdimited to the immediate neighbourhood
of bright stars.

Thus, while the angular resolution as one parameter of teergimg performance is improved dras-
tically with spatial interferometers, the sensitivity &g second parameter suffers, unless a bright guide
star is available nearby.

In the following, we will introduce the theory of image foritian in spatial interferometers and the
influence of atmospheric turbulence on this process. Thes tasthe experiment are (1) to measure a
'stellar’ diameter and (2) the distance of a ’'binary’ whewe ttars are represented by a masked light
source at a large distance. The goal is to grasp the genegbidspatial interferometry and to be able
to properly interpret data taken with spatial interferoengt

3 Preliminaries and Definitions

Light as an electromagnetic wave can be represented by ansioméess scalar(7, ¢), called theoptical
disturbancethat is proportional to one component, efg,, of the electric field vectoE of the electro-
magnetic wave. The orthogonal componefij, can be treated independently. It is customary to write
v(r,t) as a complex quantity. However, the physically relevant pgpresenting the electromagnetic
wave is the real part.

A monochromatic, plane wave propagating along the z-axeaartesian coordinate system is then



described by
v(z,t) = vpe WITF) 1)

with w = 27 andk = 27/, whenv is the frequency and the wavelength of the monochromatic
wave.

To discuss the propagation of light in space it is convertiemtroduce the time independent dimen-
sionlessamplitudeV (z) at frequencyr so that the monochromatic optical disturbance can be writte
as

v(z,t) = V(z)e ¥t 2

The intensity is the quantity that we usually measure with optical detsctdt is related to the
energy flow densitgiven by the Poynting vectdf = E x H. The Poynting vector is perpendicular both
to £ and H, and it points into the direction of propagation of the aleatagnetic wave, which is the
z-direction in our example of a plane wave.

The Poynting vector oscillates with twice the frequencyf the electromagnetic wave, which is
about 10° Hz in the visible part of the spectrum. Since the temporadltg®n of the available detectors
is much lower than 10 sec, one can only measure the time average of the Poyntitgywkfined as

1T
<5, >= lim ﬁ/_TSzdt. 3)

T—o00

The time average of the Poynting vector is calledftive(in astronomy) or th@radiance (in radiometry)
of the electromagnetic wave in units of W/mThe measurable quantity with an optical detector is the
integral of the flux over the detector area, i.e. the powenmnitswof Watt.
In the notation with the dimensionless optical disturbangce t) we define the dimensionlessen-
sity as the time average of the produet*

1 T
I(z) =< v(z,t)v*(z,t) >= lim —/ v(z, t)v*(z,t) dt = o3 . 4)
T—oo 2T J_7
The intensity is a dimensionless quantity that is propagido the flux< S, > and, thus, proportional

to the signal that is measured with optical detectors.

In terms of the amplitud® (z) the intensity, using (2) and (4), is written as
I(z) = |[V(2)]*. (5)

In the case of polychromatic light the linear superposition of individual monochromatic esv
forms the polychromatic optical disturbance. We introdtive time independergpectral amplitude
V(z,v) (compare to (2)) such that it is

v(z,t) = /OOO V(z,v)e 2™ dy ., (6)

V(z,v) has the dimension of HZ.
Thespectral intensity- sometimes called th@ower spectral density (7, v) is defined such that it
is

I(z) = /Oool(z,y)dy. (7)

The dimension ofl (z, ) is Hz"!. The spectral intensity is proportional to tfex densityin units of
W/m?/Hz. In astronomy, a common unit for the flux density is 1 Jgr(dk) = 1026 W/m?/Hz.

Hint: With the polychromatic intensiti(z) being the integral of the spectral intensitié&:, v), the
propagation of polychromatic light through space and tlgbwptical systems can be treated by first
considering the monochromatic case and then adding up tbetrsp intensities at the very end of the
propagation process. This is sometimes helpful if the numobiategrals starts being overwhelming.
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4 Young's Experiment

This is the classical diffraction experiment named afteorfihs Young who conducted it in 1802, pro-
viding the experimental cornerstone for the demonstragidhe wave nature of light. In its simplicity it
is perfectly suited to explain the concept of spatial irdeymetry.

A X
Q(x)
a
— >
z=2 z
Aperture Plane Plane of Observation

Figure 2: The geometry of Young'’s experiment in a plane actbe pinholes. A monochromatic plane
wave from an on-axis point at a large distance illuminatestito pinholes separated by a distarige
called thebaseling in the aperture plane. For small angles, itis- 2/z; with = the coordinate of), the
point of observation. The differenee — r, is called the optical path difference (OPD), with ORL.B
for smalla. The OPD is related to the difference in arrival timbetween the light from the two pinholes
by 7 = OPD/c. A plane wave from a point source @ is also displayed.

Young illuminated a screen with two pinholes by light fromirggée point source at a large distance.
By passing through the pinholes the light was diffracted thedvaves from the two pinholes interfered.
On a second screen, in the plane of observation, the diffragiattern could be observed showing the
characteristic fringe pattern. In Fig. 2 the experimentapidted schematically for an illuminating point
source at very large distance from the screen so that an>apmiely plane wave, with/ () = 1,
illuminates the two pinholes. A plane wave from a light seuat an angley, is also displayed.

The amplitudd/ at point@ as a function of diffraction angle in the plane of observation at distance
z1 is then the sum of the two spherical waves originating froenggimholes,

V(a) — E eikrl + E eikrg
1 T2
= sz R r42)/2 9 cog(k(ry — rq)/2). (8)

r; is the distance between an individual pinhole and the p@inwith the approximation; = ro = 21
for the amplituded/ /r; of the spherical waves. The difference between the optatdl lengthsy; — r,
is called the optical path difference, OPD.

Theintensity is the squared modulus of the amplitude,

Ie) = V(@) = (3

21
with Iy = 2(‘2/—2)2. This intensity distribution is called thieinge pattern when the fringe spacing, the
distance between the maxima of the cosine function,/iB (see Fig. 3a). The notation for the fringe

spacing in milli arcsec (masj/mas = 206%/%, with A in pm is sometimes quite handy.

)2 2(1 + cos(k(ry — 7“2))) = Iy (1 + cos(kaB)), 9)
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The OPD,r;y — ro = aB, is at the same time a difference in arrival time called theetdelayr
between the light from the two pinholes, with= aB/c andc the speed of light. We will see later that
the diffraction pattern for increasing diffraction angles- corresponding to increasing time delays
is constrained by the temporal coherence of the incomird.lig

For a light source at position;, we have to add OPD= o(B to r; — ro obtaining the total OPD
(o + ) B. This results in a fringe pattern that is shifted by, yielding

I(a) = Io (1 + cos(k(a + ap) B) ). (10)

Thevisibility , V, is defined as the contrast of the fringe pattern. The mowocatic fringe patterns
(10) have an excellent contrast since the intensity osedlbetween 0 and 1. This can be expressed more
formally by defining the visibility as

[max - [min
v [max + [min . (11)
With I,;, = 0 andl,,.x = 1, the contrast of the fringe pattern)s= 1.

Spatial interferometry is about measuring the contrastinfés. Hence, we should have a closer
look at the result of Young's experiment. A contrast of 1 imiade pattern, i.e. perfect constructive and
destructive interference in its maxima and minima, impiied the light waves from the two pinholes are
perfectly coherent. In fact, the plane monochromatic whuminating the screen with the two pinholes
and, thus, the light emerging from the pinholes are pesfextherent.

The termcoherencas linked to the existence of interference phenomena imadiffon experiments
like Young’'s experiment. A fringe pattern with a good costreequires a good coherence between the
light waves from the two pinholes. Light of perfect cohererauses a fringe pattern with a contrast of
1 as stated above. If there is no coherence between theraghtthe pinholes, there is no fringe pattern
but only a homogeneous illumination as a result of the diffca of light at each individual aperture.
Then, the light is called incoherent.

It should be emphasised that by measuring the contrast dfitige pattern in the plane of observa-
tion we determine the coherence in the aperture plane wathih pinholes. Although this sounds trivial
at this stage we will see later that this has important resions.

Temporal coherence

First, we discuss the effect of a finisgpectral bandwidthAv of the light source. The resulting fringe
pattern is formed by adding up interference patterns likat8ifferent frequencies to obtain the observed
intensity distribution. This is displayed in Fig. 3b for theband?! with 2.2+0.2m, A\ = 0.4 um and

a baselineB of 10 cm. For zero OPD, at = 0, all wavelengths have an intensity maximum. This is why
this fringe is called thevhite-light fringe The position of the first minimumy,;, = A/(2B) or OPD

= \/2 is then wavelength dependent, as well as the positions dbtegving maxima and minima.

This effect reduces the contrast of the resulting polyclaterfringe pattern (black curve in Fig. 3b)
for increasing diffraction angles. Sincea is related to the difference in arrival time, the time defay
throughT = aB/c, this effect could be reformulated by stating that the @sitof the resulting fringe
pattern is reduced with increasing That time delay that is related to the quasi loss of fringetrest
is called the coherence timg, which is proportional to the reciprocal of the spectral daitth Av.
Consequently, the coherence length is definelj asc/y. The exact relationship depends on the form
of the spectral band.

The number of fringes visible in a fringe pattern is thus tedito abou\ /A since the diffraction
angle when the fringes have fadedois= +7.c/B = +1/Av A\v/B = +v/Av \/B. With a fringe
spacing of\/ B, andAv /v = AX/X we arrive at a number &f\ /A fringes.

1The atmosphere transmits only certain bands in the infra@e frequently used band in the near infrared iskhband
at 2.2t0.2pm. Most of the numerical examples will be given for this band.



Spatial coherence

While the spectral bandwidth affects the temporal cohergiiie size of the light source affects the fringe
contrast and, thus, the spatial coherence of the light iapleeture plane. First we take an assumption on
the nature of the light source. We assume that the sourceatiglpincoherent, meaning that each point
on its surface radiates independent, i.e. uncorrelated) fis neighbour. A thermal source like a star is
a typical example of an incoherent source. Then we competentnochromatic fringe pattern for each
source point using (10). Having an incoherent light soureeadd up the individual fringe patterns, i.e.
the intensity distributions, that are slightly shifted sxgheach other. The result is a fringe pattern (black
curve) with reduced contrast as displayed in Fig. 3cXfet 2.2 um.

@), A/B = 4.5 arcsec TCHN

l — -~

-20 -10 0 10 20 0 10 20
o [arcsec] o [arcsec]
a) point source, monochromatic b) point source, K-band

20

o [arcsec] o [arcsec]
c) extended source, monochromatic d) extended source, K-band

Figure 3: Summary of the influence of source size and spdudiradiwidth on the fringe pattern. The
pinhole separation, the baselif® is 10cm in all figures. Ind) an individual fringe pattern for an
observing wavelength of = 2.2 ym and a point source is displayed. In) {he K-band fringe pattern is
shown (black curve) when observing a point source.cjritfe monochromatic illumination of a source
with diameter 2 arcsec produces a fringe pattern (blackejwwith reduced contrast . Inl) the resulting
fringe pattern (black curve) i -band illumination with a 2 arcsec source is displayed. Tisénity

is reduced around. = 0 due to the source diameter and it is further reduced foeasing diffraction
anglesa due to the finite spectral bandwidth.



To compute this result, we write the fringe pattern (10) asrecfion both of the diffraction angle
and of the position of the source poit, I(a, ') = Iy(1 + cos(k(a + o’)B)), yielding the resulting
fringe pattern for a source of diametef as

/2

Ia) = / I(a,a’)dd!

—af/2

aj/2 , aj/2 , ,
= / Iyda' + / Iy cos(k(a+ o')B)da
—ap/2 —ap/2

= /I(o/)do/ —|—/I(o/)cos(k:(oz+o/)B) do/, (12)

with I(«’) the source intensity distribution of the source with diaenet), incorporating the integra-
tion limits. The second term is the real part of the complexrfev transform/ I(a/) exp(—ik(a +
o')B)da/. We extractexp(—ikaB) since this term does not depend ®h The remaining expression
[ I(d) exp(—ika/ B)dd! is the Fourier transform of the source intensity distribati (o).

In Young's experiment, the baseling is the distance between the pinholes. Discussing now a
Fourier transform between the coordinate spacesnd B we have to interpreB as a coordinate that is
the distance between any two points in the aperture plane.

In two-dimensional planes, we use coordinate vect@tsn the source plane anf in the plane of
the difference coordinates.

Denoting the integral over the source intensitylpy= [ I(a’)dd’, and the Fourier transform of the
source intensity bw(é), we obtain the fringe pattern of an extended source as

I(@) = I (1 + Re (u(ﬁ)e_ik&'é))
= Io(1+ |u(B)| cos(¢(B) - kai - B)). (13)

The contrast, i.e. the visibility, of the fringe pattern #opair of pinholes separated lb?/is determined
by |(B)|. This is whyu(B) is called thevisibility function— in general a complex function with phase
#(B). Itis straightforward to see that fou(3)| = 1 the fringe contrast is 1 and that for a value of zero
there is no fringe pattern, i.e. the contrast is zero. Thesepbaé) defines the position of the central
fringe, called thavhite-light fringe

Observing with a spatial interferometer, it is exactly th® quantities fringe visibility|u(§)| and
its phasezﬁ(é), that we are chasing.

The definition of the visibility function:

f I(&/)e—ik&'-éd&/
Io

is also known as thgan-Cittert-Zernike theoremWe have deduced it here in a heuristic manner by
interpreting the result of Young's experiment. One can &lase the deduction on the general theory
of the propagation of light and on the propagation of itsistiaal properties described by coherence
functions. We will treat this topic in the next section.

Regarding (14), it is obvious that the visibility functiqr(é) is a complex function. Due to the
intensity distributionI(a’) being real and positive by definition, the modulug of the visibility is
symmetric and its phasgis anti-symmetric:

n(B)l = |u(~B)| and
¢(B) = —o¢(—DB).

The two formulae (13) and (14) are the cornerstones of spatizaferometry. They link the intensity
distribution in the object (@’) through a Fourier transform, (14), to the visibility of thenfje pattern

wB) = (14)
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(13). The inversion of this argument — measuring the visiked for many different baseline vector,
and reconstructing the object intensit§f’) through a Fourier back transform pf 3) — was the impor-
tant step to take spatial interferometry from the mere datetion of stellar diameters to an imaging
tool of extremely high angular resolution.

Figure 3d shows the fringe pattern for a star with a diamédt@rascsec as in Fig. 3c and té-band
spectrum as in Fig. 3b. The visibility is reducedcat= 0 because of the finite size of the source and
goes further down for increasing diffraction angle This mixture of spatial and temporal coherence is
unavoidable and sets tight constraints to the data prawessice the contrast variation due to the shape
of the source has to be clearly separated from the contrdatiga due to the spectral bandwidth. In the
following section, the quasi-monochromatic approximatiall be introduced to deal with this problem.

Hint: If the Fourier transform of an intensity distributiof(@’) as a function of a coordinate differ-
enceB is too abstract one can always look at the situation in terinérimge pattern per source point
and per wavelength’ and then add up the intensity distrdmgiof these fringe patterns as in (12), if the
source (not the light in the aperture plane!) is spatiallgdmerent. The same argument was used in
the Sect. 3 when monochromatic intensity distributionsewegarded and then summed up to obtain the
polychromatic intensity. This illustrates the equivalerd temporal and spatial coherence that we have
discussed here heuristically. In the next section, the g¢eherence theory will be used to explain the
phenomena.

5 The Visibility and the Mutual Coherence Function

In the context of Young's experiment we introduced the cehee as a phenomenon related to the con-
trast of the fringe pattern. Here, we will use a more geneedihition based on statistical properties.
Before defining the coherence function, the nature of thisd@an process needs to be discussed. So far,
the optical disturbance has been regarded as a plane or as a spherical wave providigtgraninistic
signal throughout the propagation and diffraction proctksw, approaching large celestial bodies emit-
ting (mostly) thermal radiation, their light cannot be negad as monochromatic and only approximately
as a plane wave. Very close to the surface of a star, it is alimpossible to define a wavefrénand a
direction of propagation. At a very large distance from ttag,sa point is a good approximation for its
shape, and a plane wave describes the situation rather well.

In any moment during the propagation process, the opticilidiancey(#,t) in a given plane at
distancez, that is fed by light from individual, independently radimf, polychromatic points on the star,
takes on random values that fluctuate typically at timeschle the reciprocal of the average frequency.
If one could take a series of snapshots with femto secondsexpdime, the pictures would all look
different. However, these fluctuations average out ovee iimervals longer than &/ Thus, snapshots
with longer exposure time would all look the same.

We will regard the individual wavefronts as possible reslians or members of the ensemble of
the random process, and the optical disturbanEé ¢) as the random variable. We will make two
assumptions on the random process that will make our lifemeasier.

First, we assume that the random process is statisticalljostiry in time. This means that the
statistical properties are the same all over the ensembléhat the average is independent of the absolute
moment in time when it is taken and that the correlation only depends onitte differencet; — ¢s.

Second, we assume that the statistics over one particulaafieat in a given moment is the same as
the statistics at a given point waiting a ’'long’ time. In atleords, the statistics, e.g. the average, over
the complete wavefront as an individual realization of tnedom process can be replaced by the average
over many different realizations that appear in temporetsssion. A ’long’ time providing the average

2A wavefrontis the virtual surface of the same phase of a propagating.wave
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over a sufficient number of realisations is defined’as> 1/v, i.e. much longer than the oscillation of
the electromagnetic wave at the average frequency.

If these two conditions are met, the process is cadlggbdicand the ensemble average can be re-
placed by the time average.

Themutual coherence function (MCF)is the critical quantity for understanding spatial inteof@a-
etry. Itis the second order correlation function of the ggitidisturbance as a function of time difference
and spatial coordinates. Remembering that the opticairtighce is proportional to one component of
the electrical field vector, one could say that we deterntieecbrrelation of two electrical field vectors
at two points in space and two points in time.

Due to the ergodic statistical process, the MCF is definedtiaseaaverage:

P(fl,(fgﬂ') = <v(£’1,t+7)v*(f2,t) > (15)
N T (=
_ qlgnmﬁ/_Tv(xl,HT)v (o, 1) dt (16)

whereZ; are the coordinate vectors ands the time difference.
With (4), it is straightforward to see that the intensity denexpressed by

I(#) = [(Z,,0). (17)

In the case oincoherent light the correlation between the optical disturbances is zéwy aire
completely independent. The MCF on the surface of a thermate for instance is then given by

F(fl,fQ,T) = 1(51)5(51—52)5(7'), (18)

whend(.) denotes thd®irac functionhaving zero value unless the argument is zero. In this chse, i
trating the independence of the optical disturbances, ahrelation is zero unless the value at the same
position ¢, = ) and at the same moment in time & 0) is taken. Thus, an incoherent source is
completely described by its intensity.

The other extreme is that abherent light, when the optical disturbances are well defined — for
instance a plane wave — throughout space and time, and thedslCBe replaced by the product of the
optical disturbances,

(&), T, 7) = v(Z1, t + )" (Z2,t) = V(&) V*(Fa)e ™07 . (19)

Using (2), the optical disturbances are replaced by the indpk V' yielding the MCF as the product
of amplitudes at positiong; and Z, multiplied by the complex exponential as a function of thredi
differencer.

The MCF in the immediate neighbourhood of the light sourcg, @ose to the surface of a star, is
different from the MCF at a very large distance, for instasome light-years away. This means that
the statistical properties of the light, its coherence hgeawhile the light propagates. In this sense, we
speak of the propagation of the MCF keeping in mind that itcisialy the electromagnetic wave that
propagates.

The propagation of the MCF in space is described by applying a formalism that was defiram
the Rayleigh-Sommerfeld diffraction formula. To simplifye propagation process, we assume that the
light sources (e.g. stars) are incoherent and that all weeblingles are small. The latter is called the
Fresnel approximation. In addition, we apply theasi-monochromatic approximatiomhen (1) the
spectral bandwidtiAv is assumed to be much smaller than the average frequenagd (2) the time
differencer is much smaller than INv.

We can now write the MCF in the aperture plane as a functiohetbordinate difference, of two
points as

—

qu(B,T) — G(VO)/[(&/)e—ikog-d" da’ e—i27rl/07" (20)
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with G(1p) the source spectrum a§.

It is very important to note that, due to the light source geircoherent, the MCF only depends on
one coordinate3, which is the coordinate difference vector between two tsoim the aperture plane.
The absolute positions of the two points are not relevant.

Not very surprisingly, the MCF in quasi-monochromatic apimation, (20), is very similar to the
MCF of coherent light, (19). However, while the dependentéhe time difference is exactly the same
— as long as is much smaller tham/Av — the dependence on the difference coordirfate different.
The latter, describing the spatial coherence, dependsecanitiular shape of the sourtgY’). Therefore,
the form of the MCF with respect to the spatial coordinBtearies with the distance of the light source
from the aperture plane, while it is invariant with respectte temporal coordinate. This is also true
if we go beyond the quasi-monochromatic approximation.

Thus, the spatial coherence of the light changes when itagates in space while the temporal
coherence remains untouched.

Regarding the MCF at = 0,

Ton(B,0) = G(w) / I(@)e B 4, 21)

and calibrating it by the average intensitywe obtain the van Cittert-Zernike theorem (14) describing
the propagation of the mutual coherence function from thecgoplane into the aperture plane by Fourier
transforming the intensity distributioh(@’) to obtain the complex visibility functiop:

Tom(B,0)  G(w) [ I(@)e kB qa
In, Gy [I@)yda

with B the difference coordinate vector in the aperture platiehe angular coordinate vector in the
source planey, the average frequency, ai¢i?’) the source intensity distribution.

By rigorous application of the coherence theory we haveedrat the same formula, the van Cittert-
Zernike theorem, for the propagation of the MCF, as by dsiogsYoung's experiment in Sect. 4.

We can now proceeflom the aperture plane into the plane of observationby computing the prop-
agation of the MCF using again the Rayleigh-Sommerfeldatition formula. Since we only measure
the intensity, we reduce the MCF in the plane of observatahé intensity, yielding

wB) =

(22)

1@) = (I +Re[Cgu(B.7])
= (Io+ Re[Cqu(B, 0)e~™7))
= Io(1+ Relu(B)e~™7])
= To(1+ |u(B)| cos(#(B) — 2mw7)) (23)

with vy = o?-B/A. We found the same expression for the fringe pattern in thegbdf observation when
discussing Young’s experiment in monochromatic illumioat(13). We note again, that by measuring
the intensity distribution of the fringe pattern in the manf observation we obtain information on the
MCF qu(é, 7) in the aperture plane.

The fringe pattern in monochromatic illumination is digpd in Fig. 3c where the fringe pattern has
a constant visibility for all diffraction angles. Formall{23) also describes a fringe pattern that does not
lose contrast with increasing diffraction angleesp.r. However, we have to keep in mind that the quasi-
monochromatic approximation is restricted to very smadinly. Regarding the<-band fringe pattern
in Fig. 3d this can be explained. Thé-band,2.2 4+ 0.2 ym, with AX = 0.4 pm fulfils the condition of
a narrow bandwidth. As long as we stay on the central fringe very small diffraction angle and very
smallr, we can attribute its contrast loss in very good approxiometo the spatial coherence only (see
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Fig. 3d). For largey, the fringe pattern can no longer be described by (23) simeedntrast loss is not
accounted for in the quasi-monochromatic approximation.

Thus, the contrast and the position of the central fringevang good approximations for the visibility
|u(B)| and its phase(B) given by the Fourier transform of the source intendit§’) as stated by the
van Cittert-Zernike theorem.

The two pinholes can be regarded as an instrument to med®uo®lherence properties by probing
the wavefront with two pinholes, and determining the spatiderence as the visibility of the fringe
pattern. This result is interesting in two respects. Fiwstfound out how to relate a measurable quantity
to the complex visibility function. Second, by doing so, waide the visibility function in the aperture
plane from characteristics of the intensity distributitnn@e visibility and centre fringe position) in the
plane of observation.

Hint: Don't be overwhelmed by all the theory. What remains fronfulidramework of propagating
coherence functions is (1) an incoherent source that iy fudiscribed by its intensity, (2) the Fourier
transform of this intensity distribution that provides #t@herence function in the aperture plane, and (3)
again the intensity in the plane of observation since we oanreasure anything else.

The important step is to conclude from the intensity distidn of the diffraction pattern, namely
its visibility, on the coherence function in the aperturan@. Thus, we only deal with the coherence
function in the aperture and regard intensities elsewhere.

The important point is the connection between the shapeeabltfect intensity distribution and the
visibility for varying baselines.

5.1 Example: Venus

An example illuminates the situation: we model Venus as toumidisk with angular diameter, vary-
ing between about 15 and 45 arcsec depending on the mutuabps®f Venus and Earth. The circular
intensity distribution is described by tl@c-functionthat is defined as ci(é%') =1if |Z| < Rand 0

elsewhere. A circular intensity distribution is then reggated byl (&) = (7(af/2)?)~! circ (ﬁ)
0
with o/ = |&@|.
We compute the visibility function as the Fourier transfafi/ (¢') yielding

— 1 Oé/ . o =/
B — : —ikoB-& d—»/
w(B) 777(0/0/2)2 /mrc <0/0/2) e a

= Besinc(koBay/2), (24)

with the Besinc-functiordefined as Besirie) = 2 J; (x)/x, and.J; (z) the first ordeBessel function
Figure 4 displays the visibility function for Venus’ smalteangular diameter af{, = 15 arcsec as a

function of the baseline in mm. The first zero of the visigiliinction is reached aB = 1.22\/«aj, =

37mm, orB/mm = 252 Amm o jonger baselines the visibility function slowly ogaies between

7
ay /arcsec

negative and positive values with decreasing amplitude.

One can now understand the effect of a visibility functioattis shaped like a Besinc-function (24).
The visibility function shows up in the varying visibilityf the fringe patterns in Fig. 4. Each horizontal
line shows a fringe pattern for an individual pinhole separaB whaose visibility is determined by the
modulus|y(B)| of the visibility function.

The Besinc-function is a real function with zero phase. Hmwveworking with the modulus of the
visibility function, negative values of the Besinc-furati have to be considered by a phasebof T,
since|u(B)|e™ = —|u(B)|. The fringe pattern is shifted by, producing a black fringe at = 0
for pinhole separations between 37 mm and 67.5 mm when thad&sction has negative values (see
Fig. 4).
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Figure 4: Fringe patterns of Venus in Young’s experiment.ti@nleft, the intensity distributions along
horizontal lines display the fringe pattern for pinhole agpionsB = §| between 10 and 80 mm. The
fringe spacing is\/ B. The light source illuminating the pinholes is Venus withréform disk diameter

of 15arcsec. The spectral band is theband (2.2£0.2 um), i.e. A\/AX = 5.5. The finite spectral
bandwidth makes the fringe visibility disappear for difftian anglesy = |@| larger than aboui.5\/B

i.e. there are about 11 fringes in the fringe pattern. Theg&ispacing decreases with increasing pinhole
separation, and the fringe visibility is reduced to zerd@at 1.22)\/aj = 37 mm. For 37 mnK B <
67.5 mm, the fringe pattern inverts its sign displaying aklainge ata = 0. The visibility function

—

wu(B) as a function of pinhole separatidhfollows a Besinc-function that is displayed on the right.

6 Image Formation

While Young’s experiment is a useful tool to demonstrateetehce effects, in practise the apertures of
a spatial interferometer are considerably larger thangh@#) keeping in mind that sensitivity is one of
the performance parameters of an astronomical observation

Before discussing the case of combining the light from twihiidual telescopes we will discuss the
case of image formation in a single telescope.

6.1 Image Formation in a Single Telescope

We start again by regarding the light from a single point seat a large distance on axis. A plane wave
with amplitude V' (£) arrives at the aperturd(¢), with ¢ the coordinate vector in the aperture plane.

We denote the wave leaving the aperturelfy(¢) = V(§)A(E). The light is diffracted at the aperture
producing thd=raunhofer diffractionpattern in the plane of observation that we can compute by

V(a) = / Vap(€) 7 €aE (25)

Fraunhofer diffraction can be observed at a very large wistdbehind the aperture. If we place a lens
in the aperture we find the Fraunhofer diffraction patterthim focal plane of the lens at a distante
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from the aperture. This is the situation that we have in apsgstems. The intensity distribution of the
diffraction pattern is given by(a) = |V (&)

In the theory of linear systems, the diffraction patterrrespnts the response of the optical system
to an impulse, in this case the approximately point-likemsity distribution of an unresolved star. This
response is called th@int-spread functiorfPSF) of the optical system. Since the connection between
the aperture of the optical system and its PSF is given by aiétauansform, the formalism described
in this section is also callelourier optics

For a circular aperture as the most common case of a telesgmraure with diameteb we write

A(€) = cire (D/Z) ¢ = |¢], with the area of the circular aperture given By = w(D/2)2. A(£) is

illuminated by a point source at infinity Witﬁ({) = 1} in the aperture plane, settiigy = 1. Using
(25), the diffraction limited amplitude in the focal planancbe written as

Via) = /circ (Di/2) e_ik&'gdg
= ApBesinc(kaD/2), (26)

with o = |@|. The result of the Fourier transform of the circ-functiorthe Besinc-function.
In telescopes, the intensity distribution of the diffractilimited PSF is called thairy disk The
squared modulus of the amplitudlg @) yields the Airy disk as

PSF(d) = V(@)V*(a@) = A% Besinc?(kaD/2). (27)

The first minimum of the PSF is aty,;, = 1.22 A/ D, Or ayyin/mas = 252%/%, with « in milli arcsec
(mas), the observing wavelengthin ym and the telescope diametérin m. For a binary star with

a separationv,,;,, the resulting image, which is the sum of two individual Attisks, shows a local
minimum between the peaks of the Airy disk. Therefore the $tews of the binary can be identified as
individual objects in the image. This criterion of angulaselution, when the smallest resolvable angle
is amin, is called theRayleigh criterionof resolution of a telescope.

Discussing the visibility function in the last section, veeihd a Besinc function as visibility function
in the aperture plane assuming that the light source at a ldisggance was circular. Here, the Besinc
function describes the intensity distribution in the fogkne of a telescope, assuming that a point source
illuminates a circular aperture, an altogether differemggical quantity. One has to carefully consider
which quantity is discussed in order to avoid confusion.

Theimaging processcan now be described by summing up the PSF of each individjatiopoint
— all slightly shifted according to the position of the olfjpoint — assuming that the object is incoherent
and, thus, the intensities add up. In Sect. 4 discussingo#®eih fringe contrast in Young's experiment
when illuminating the pinholes with an extended object weduhe same principle.

Denoting the object intensity distribution [6y(a@’) we obtain the image intensity distribution as the
integral of individual PSF weighted by the object intensityeach object point:

1@ = /0 (@) PSF(@ — &) da’
= O(d) * PSF(Q).

This operation is a convolution of the object intengitya’) with the PSF, denoted by

If the object has some very fine structure a rather broad Pghtmiash out the detail. Or, if there
is a binary star with a separation smaller than the Rayleigh 6f 1.22\ /D, the image intensity (&) is
undistinguishable from a single star. By the same token,can@ot determine the diameter of a star if
its disk is much smaller than the PSF. Thus the width of the, BEiEs reciprocal the diameter D of the
aperture, determine the angular resolution. We will sedénfollowing that combining the light from
two apertures increases the limit of resolution propogido the baseline that is much larger than the
individual aperture.

(28)
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6.2 Image Formation in a Spatial Interferometer

We begin by regarding an aperture that consistsvofpinholeslike in Young’s experiment. This can be
described by twa-functions att, and at—¢,,:

AE) = 8(E - &) +3(E+ &)

In Young’s experiment we let a plane wave pass through thHeob#s and we computed the diffraction
pattern by having two spherical waves propagate from eadmof. In the formalism of the imaging
process we use (25) to calculate the aperture in the focaéa

V@ = [6E€-§) +6E+g)e g
o ik@E + etik@E — o cos(kd - 5,,) .

The intensity distribution of this diffraction pattern sh®the familiar fringe patterdi(&) = 4 cos?(ka -
&,) = 2(1 + cos(ka - B)) with B = 2¢, the baseline vector, like in (9).

Enlarging the pinholes to smallb-apertures with diameter D, we write the aperture as a convo-
lution of a sub-aperture with twé@-functions,

A() = alé) * (3(€ = &) +6(E+ &),

yielding the amplitude in the focal plane as

—

V(@) = [ o) * (6E— &) +5(E — &a)) e M.

This formula can be simplified since the Fourier transformaafonvolution is the product of the
Fourier transform of the individual functions. If we assugigular sub-apertures of diametér we
obtain again a Besinc function for the Fourier transformz@, and a cosine function for the Fourier
transform of§(€ — &,) + 6(€ +&,),

V@) = [a@e el x [ (56E- &)+ 5 +§)) e hag
= ApBesinc(kaD/2) x 2cos(ka - B/2). (29)

The intensity distribution in the focal plane is given|b§(&)|?. Since this is the intensity distribution
for a point source at infinity, we call it theSF of the interferometer.

PSF(@) = |V (@)[?> = 242 Besinc?(kaD/2)(1 + cos(kd - B)). (30)

The PSF consists of the Besinc-function of an individual-apbrture that is multiplied by the fringe
pattern of two pinholes. Since the Besinc-function is withem the fringe pattern, the PSF looks like
a fringe pattern with the Besinc-function as an envelope,8g. 5. If the sub-apertures were infinitely
small, the Besinc-function would be infinitely wide and weuldbsee a fringe pattern like in Fig. 3.

Before writing down the final image intensity distributiorewave to distinguish two cases, that of
a large object — larger than the Besinc-function of the PSkd-that of a small object that looks like a
point-source when observing it with an individual teleseop

Assuming we observa binary star that is clearly resolved by an individual telesope we would
see two distinct PSF, the image of this binary, in the imagal If we observe this binary with an
interferometer combining two of these telescopes, we waghin see two PSF but now each PSF has
fringes as described by (30). Figure 6 shows the image iityedistribution of a stellar cluster, with
each PSF displaying a fringe pattern.
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Figure 5: The PSF of a spatial interferometer (30) with twb-apertures ofD = 8 m and a base-
line B of 100 m in the K-band, withh = 2.2+0.2 um. The radius of the Airy disk — only the central
core is displayed — i$.22)\/D = 69 milli arcsec and the fringe spacing B = 4.5 milli arcsec. The
consequence of observing a spectral band instead of a Spgldral line is a loss of contrast after
A/AN = 2.2/0.4 = 5.5 periods, resp. after abott25 milli arcsec from the white-light fringe at the
centre.

Since the fringe patterns in the two PSF do not overlap we atadetermine the influence of the
binary onthevisibility of the fringe pattern. One could also say that i®rmation that we are seeking
— the separation of the binary — is already available by th@adce between the two separated PSF.

What we do find in the visibility of each individual fringe pan is information on the size or shape
of each individual star of the binary. We could observe thiegl pattern in each PSF individually
ignoring the other PSF. This is in fact what is done very oftespatial interferometry, when the PSF is
fed into an optical fibre. This technique has the advantagetiie influence of atmospheric turbulence
is greatly reduced.

Thus, the coarse detail of the object, in this case the separaf the binary, is determined by
an individual telescope since the PSF is smaller than tharatpn. The fine detail, the shape of the
individual star, which is much smaller than the PSF, caneaddtermined by an individual aperture, but
it is measurable through the visibility of the fringe patter

Using the assumption that oabject intensity distribution O(&) is much narrower than the PSF
of an individual sub-aperture we write the convolution of object intensity and PSF as

I(d) = O(d)*PSF(aQ)
~ 2A%Besinc?(kaD/2) (O(d’) * (1 4 cos(kad - 5)))

Thus, we have a convolution of the object intengity) with a fringe pattern proportional to 1+ cos()
like in Young'’s experiment. The resulting fringe patterremseloped by the Besinc-function.
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Figure 6: Simulated intensity distribution in the image bé tLarge Binocular Telescope (LBT) on
Mt. Graham in Arizona. The parameters are: telescope apeRu= 8.4 m, baselineB = 14.4m,

A = 2.2 4 0.2pum (K-band). The first minimum of the PSF is &22\/D = 66 mas and the fringe
spacing is 32 mas. Each star in this crowded field shows andiéiywith fringes. The inset displays an
individual PSF. Due to the combination of values 1orand B, there are only about three visible fringes
across the Airy disk, and the loss of contrast due to the waiditthe spectral band is barely visible.
Courtesy T. Herbst, MPIA, Heidelberg

For Young’s experiment in Sect. 4 we computed in (12) theltiegufringe pattern as an integral
of individual fringe patterns that were shifted accordinghe respective source point. Formally, this is
identical to the convolution between the object intensitg ¢he fringe pattern. The result was a fringe
pattern with a visibilityu(é) determined by the Fourier transform of the object intengitgerting this
result here we obtain the image intensity distribution ipatsl interferometer as

1(d) = 20043 Besine? (kaD/2) (1 + |u(B)| cos(¢(B) — ka - B)), (31)
with Op = [ O(&’)da’ and

ola' e—ik&'-gd&*/
up) = LA , (32)

the van-Cittert-Zernike theorem.

These two formulae form the basis of our experiment. As losigha object is smaller than the
PSF of an individual telescope, given by the square of thénBdanction, we observe a fringe pattern
with a visibility according to the van-Cittert-Zernike tirem. Combining visibility measurements for
many baselines allows to reconstruct the object intensif\(@) as the Fourier back-transform pf ).
The smallest detail that can be resolved in the object is tletarmined by the longest baseline of all
measurements, which in turn is equivalent to the finest éripgttern with fringe spacing/B. One
should note that the baselines need not only vary in lengttalso in orientation since we have two-
dimensional images.

The coordinate space that is opened by different baselﬁuasemembering thal is the difference
coordinate between the two sub-apertures — is not the apgrtane but a virtual plane called the-
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plane when u and v are the two coordinates of the plane. A vecttramv-plane is given by the baseline
calibrated by the wavelengttw, v) = E//\. One should emphasise again that only the distance and the
orientation of two telescopes determine the coordinatberut-plane, not their absolute position.

Hint: The step from Young'’s experiment with an unlimited fringiegpa to an interferometer with a
fringe pattern within an Airy disk in the image plane is ofeesource of confusion. One should keep the
following points in mind. We are dealing with diffractiontfens. These can be caused by pinholes, like
in Young’s experiment, or by real sized apertures, like ialescope or spatial interferometer. Increasing
the size of a pinhole from ’'zero’ to a real aperture decreases size of the diffraction pattern from
'infinite’ to the limited size of e.g. an Airy disk in the cadea@ircular aperture. Lenses allow observing
the diffraction pattern in their focal plane instead of atery large distance.

Combining two pinholes or two telescopes adds fringes tcsihgle aperture diffraction pattern.
Thus, the unlimited fringe pattern is confined to the Ainkdis

The imaging aspect comes in when looking at Airy disks cddagdight sources at different (angular)
positions. The resulting distribution of Airy disks in tloedl plane resembles — in terms of position and
relative brightness — the distribution of the light sourcigrefore it is called the image.

If the light sources are so close that their Airy disks areigtidguishable from a single Airy disk,
they cannot be resolved as individual sources. However,dpatial interferometer the contrast of the
fringe pattern in the resulting Airy disk might be affectgdtbe distribution of the sources and we can
resolve the object by processing the fringe contrast rdspfringe visibility.

6.2.1 Example: A Narrow Binary Star

In Sect. 5.1, we computed the visibility function of Venusasxample for an object shaped like uniform
disk. Here, we will discuss the visibility function of a naw binary star with an intensity distribution
(@) = 3(6(|& — a,/2]) + 6(|a’ + d,/2|)). The separation vector of the binaryd that is supposed
to be much smaller than the PSF of an individual sub-aperture
The visibility function is computed by Fourier transformithe intensity distribution obtaining
a4+

% /<6< >+5< : )> o k0B g5

= cos(koB - d./2). (33)

=/

—/ S
a — —=

u(B)

a
2

Writing the visibility in complex notation, the negativeluas of the cosine are accounted for by a phase
of ¢(B) = r like in Sect. 5.1.

We have now the slightly confusing situation that the vigipifunction is a cosine function that,
when inserted into (31), is multiplied by the cosine desnghhe fringe pattern. What does this mean?
The visibility function determines the contrast of the fiinpattern. Thus, for very small values of the
baseline the cosine has values close to 1 and the fringepatie almost maximum contrast as in Fig. 5.

Assuming that the baseline vector is parallel to the sejparatector, the visibility function will
decrease with increasing baseline, the fringes will disappnd come back again for another maximum
for a baseline o3 = \/«/,. For this baseline the cosine has the vakie which means that there is a
minimum in the fringe pattern where there was a maximum leedod vice versa.

Further increasing the baseline brings back another swdgack and white fringes and another
maximum of the visibility forB = 2\ /. If the stars were truly point-like this periodicity wouleéb
unlimited. In the real world (and in our experiment) wherrstaave a finite size we have to compose
our object of two disk-like structures both with diametgrthat result in a visibility function of

w(B) = Besinc(koB - ah/2) cos(koB - @, /2). (34)

This means that the visibility that was varying periodigalith the baseline, is nhow damped by the
Besinc function.
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The last point to be discussed is a baseline that is perpdadito the binary separation vector. In
this case, the scalar produét- a’, is always zero and the cosine equal to 1, and the variatioringfef
contrast with the baseline is solely determined by the dianag, of the individual stars. Thus, observing
a binary with unsuitable baseline orientation would notgdits binary nature but it would appear like a
single star.

7 Practical Issues

In real spatial interferometers, the main problem is to irhe optical path difference (OPD). Given
that OPD variations of move the fringe pattern by one period of the fringe spacings €asy to see
that the OPD has to be stable to better theh0 during the exposure time if we want to have a reliable
measurement of the visibility. Otherwise the fringe patter simply smeared with randomly reduced
visibility.

The OPD is affected by the optical path before the interfet@m— mostly passing through vacuum
but unfortunately also through turbulent air over the I&st tlozen kilometres — and inside the inter-
ferometer when the light is reflected by many mirrors beforaterferes in the focus of the science
camera.

In addition, we must not forget that we observe celestiadctgjthat are in constant (apparent) motion
due to the rotation of the Earth. Thus, the angle betweernirtteedependent position vectaf and the
baseline vectoB, and therefore the OPB & - B are in permanent motion.

Scan Number
250

200

150

100

50

Pi xel

Figure 7: First fringes of the VLTI with two 8-m telescopes Ouotober 30, 2001. Each horizontal line
represents the interferometric fringes in the K-band teggsl during a single scan (resp. exposure). Due
to atmospheric turbulence, the fringes are slightly stiftieleways

This implies that two independent telescopes form the abatierferometer so that the baseline
vector is immobile, horizontal to the ground. For shortesdimes one can use a common telescope
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mount for the telescopes of the interferometer so that telivee vector rotates in the same way as the
telescopes, tracking the position vectdr In this case the angle between the baseline and the position
vector is constant and the OPD is invariant.

In long baseline interferometers with independent telpsspthe OPD in motion is compensated for
by adding aelay linein the optical path that adds an OPD of exactly’ - B.A delay line is an optical
cat's eye system on rails that is moving with an accuracy eérsg¢ 10nm over a distance up to 100m
depending on the length of the baseline and on the maximuithzamgle that is used for observations.
Since this kind of high-tech equipment was unavailable & 1820s, spatial interferometry had been
abandoned until the 1970s when modern interferometryestart

With delay lines, the fringes are kept in a stable positioraeerage but the observations still suffer
from random OPD variations due to atmospheric turbulencevdrations. These random OPD vari-
ations have an amplitude of several microns, resulting inngé wobble of several fringes. However,
the power spectrum of the OPD variations shows that the maximmplitude is at very low frequencies
(£1 Hz). The tolerable OPD variation of abaolt10 has a typical timescale of about 1/10 seconds so
that exposure times in this range produce a fringe pattetrigfonly moderately smeared.

The fringe patterns in Fig. 7 give an idea about the short tian@ations of the fringe positions — look
at the fringe motion from scan to scan — and the long time tiaria indicated by the total variations over
all scans.

Unfortunately, there is nothing else one can do but reduthiegexposure time. This reduces the
sensitivity to rather bright sources. However, there ischn@ue that allows observing faint sources at
least in the vicinity of bright stars. This technique, cdlfenge trackinguses the measurements of the
bright star fringe position to compensate for the OPD vimiet with a fast moving mirror so that the
fringe motion is stabilised to an acceptable |évé&ince the OPD variations are correlated over several
10 arcsec in the sky, a faint star within this distance canliseiwed taking advantage of the stabilised
fringes using a long exposure time without smearing thgé&ipattern. Instead of a few 100 milli seconds
the exposure time can be a few 10 seconds, increasing thié\dgnBy a factor of 100. Since two stars
— the bright guide star and the faint science object — arerebddhis is also called dual-feed system

Adding some extra equipment, for instance a laser metradggtem to measure the OPD inside the
interferometer, a dual-feed system allows to determinqatia*se;ﬁ(é) of the visibility functionu(é) o)
that we can attempt to reconstruct a real image from theiligimeasurements.

8 Visibility Measurement

The number of independent parameters in the reconstrubjedtantensity is determined by the number
of visibilities (modulus and phase) that are measured. ,Téuen a reconstruction of a 10x10 pixel image
of e.g. a galaxy requires about 100 visibility measureme@isen that each baseline requires either to
move the telescopes or to have a sufficient number of telesdbt are conveniently distributed, and that
the baselines have to be distributed equally between théesthand the longest lengths, one understands
that it is not easy to collect a suitable set of of visibiktidn the jargon of interferometrists this process
of collecting visibility measurements is call&étling the uv-plane

Therefore, almost all interferometric observations afteto fit model parameters rather than re-
constructing an image. The measurement of stellar diamétes good example for this technique.
By assuming that the shape of the star can be modelled as@mnifisk, the visibility function is a
Besinc-function as displayed in Fig. 4. Then one measuremeuld be sufficient to determine the one
parameter, the diametef, that we are looking for (unless the visibility is very low acwuld be either in

3Correcting a signal with an actuator, in this case the fastingomirror, before the sensor so that the sensor 'sees’ the
corrected signal, is called@dosed-loop systemThere are many applications for closed loop systems, fiairce telescope
guiding or adaptive optics.

21



the first or the second side lobe of the function). More mesments allow to further refine the model by
assuming (the physically justified) limb-darkening effeat. a slight reduction of the intensity towards
larger radii of the disk. On the cover page, the reconstdustepe of Achernar is displayed. Different
orientations of baselines revealed different diametetketar, and it turned out that the star is elliptical
and not circular.
Narrow binaries form another class of objects that can beesstully observed with a few visibility

measurements. A binary has a visibility function that igqomional to a cosine function (see Sect. 6.2.1).
Then we have to make sure that the measurements are unanmiguo

9 Some Further reading

e Florentin Millour, "All you ever wanted to know about optidang baseline stellar interferometry,
but were too shy to ask your adviser”, http://arxiv.org/B&he/arxiv/pdf/0804/0804.2368v1.pdf.

e Andreas Glindemann, "Das Sterninterferometer auf demr#iraPhysik in unserer Zeit 2003,
34, 2,64-71

e Course Notes from the 2002 Michelson Interferometry SumBodiool,
http://olbin.jpl.nasa.gov/iss2002/index.html

e Peter R. Lawson (Ed.), "Principles of Long Baseline Stelitderferometry”, Course Notes from
the 1999 Michelson Interferometry Summer School, httftitgjpl.nasa.gov/iss1999/coursenotes.html
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