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1 Why Spatial Interferometry?

Over many centuries, since the times of Galileo Galilei (1564-1642), astronomers have relied on in-
creasing the size of their telescopes to improve the qualityof the observations. Telescope diameters have
grown from Galileo’s telescope with a few centimetres to thecurrent 10-m class of telescopes represented
by the Keck Telescopes and ESO’s Unit Telescopes. In all thistime, the basic idea has not changed: the
telescope as an optical system produces an image in the focalplane that is taken as a representation of
the object shape.

In the 19th century, Hippolyte Fizeau (1819-1896) suggested to improve the measurement of stel-
lar diameters by masking the telescope aperture with two small pinholes. Light passing through these
pinholes would then interfere in the telescope focal plane.Hence the termspatial interferometry. The
first successful measurement using this principle was performed by Albert A. Michelson and Francis G.
Pease in 1920 determining the diameter ofα Orionis to 0.047 arcsec. This was at at time when the small-
est diameter that could be measured with a full aperture was about 1 arcsec, equivalent to the angular
resolution of the telescope.

Although the measurement of a stellar diameter is not the same as an image, the dramatic increase in
angular resolution sparked enough interest in the new method so that it was soon understood how such
contrast measurements with different pairs of pinholes – different in separation and orientation – can be
combined to form a high resolution image not only of stars butof any type of object.

Figure 1: Comparison of the image quality on an 8-m telescopeat an observing wavelength of 2µm. On
the left, the seeing limited image is displayed for a seeing of 0.5 arcsec. In the middle, the diffraction
limited image of an 8-m telescope with adaptive optics is shown. On the right, the reconstructed image
of a spatial interferometer with a baseline of 100 m demonstrates the improvement over single telescope
observations. These images are only simulations for comparison of the achievable angular resolution.
Especially for spatial interferometers, an image with thisamount of detail and this size has yet to be
achieved.

However, due to insurmountable technical problems with themechanical stability at larger pinhole
separations, spatial interferometry was abandoned in the late 1920’s. It took until 1974 when Antoine
Labeyrie combined the light from two independent telescopes (instead of two pinholes in one telescope)
demonstrating that spatial interferometry was feasible.

Over the last decade, high angular resolution methods have matured considerably so that spatial
interferometry and adaptive optics (see experiment adaptive optics) have become standard observing
techniques, and spatial interferometry has gone beyond themeasurement of stellar diameters. However,
it is still a long way to go before ’real’ high resolution images as in Fig. 1 can be produced.
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2 Introduction

There are mainly two parameters determining the performance of astronomical observations: sensitivity
and angular resolution. The sensitivity increases with thetelescope size, with larger telescopes simply
collecting more photons. The angular resolution depends onthe telescope diameter if the telescope image
is diffraction limited. To achieve this, the optical aberrations of the telescope have to be smaller than the
diffraction effects, and an adaptive optics system has to beavailable to eliminate the image blur due to
atmospheric turbulence.

Without adaptive optics the angular resolution of even the largest telescopes in the 10-m class is
equivalent to that with telescopes of 10-cm (in the visible)to 1-m (in the near infrared) diameter. Then
the resolution is calledseeinglimited and its value is called the seeing. The advent of reliable adaptive
optics systems at the end of the 1990s was a big step forward increasing the angular resolution from
about 0.5 arcsec to 50 milli arcsec in the near infrared (see Fig. 1).

However, even today’s largest telescopes cannot resolve features on the surface of individual stars.
The diffraction limit is still so much larger than the stars that their images in the telescope focus are
undistinguishable from point sources. For example, the angular resolution of 50 milli arcsec is only just
about the angular size of Betelgeuse, the biggest star (in terms of angular size as seen from the Earth) in
our galaxy.

Switching together individual telescopes to form aspatial interferometerthe resolution is no longer
determined by the individual telescope diameter but by the distance between the telescopes, called the
baseline, B. Combining two 8-m telescopes that are separated byB = 130 m, like the Unit Telescopes
of ESO’s VLTI, improves the angular resolution by a factor ofbaseline/telescope diameter= 130/8 = 16
to about 3 milli arcsec. Then, a large number of stars can be resolved revealing their shape that is not
necessarily circular (see front page with the reconstructed shape of Achernar on the left). Thus, with
spatial interferometry, stars will never be points again.

This improvement, however, comes for a price. First, one hasto do many observations at different
baselines, different in length and orientation, to achievean image quality as in Fig.1. Second, in spatial
interferometry as in adaptive optics one needs a bright guide star to eliminate the effects of atmospheric
turbulence in order to be able to observe faint objects. Since the guide star has to be within 1 arcmin of the
faint object, the number of faint objects that can be observed is limited to the immediate neighbourhood
of bright stars.

Thus, while the angular resolution as one parameter of the observing performance is improved dras-
tically with spatial interferometers, the sensitivity as the second parameter suffers, unless a bright guide
star is available nearby.

In the following, we will introduce the theory of image formation in spatial interferometers and the
influence of atmospheric turbulence on this process. The tasks of the experiment are (1) to measure a
’stellar’ diameter and (2) the distance of a ’binary’ when the stars are represented by a masked light
source at a large distance. The goal is to grasp the general idea of spatial interferometry and to be able
to properly interpret data taken with spatial interferometers.

3 Preliminaries and Definitions

Light as an electromagnetic wave can be represented by a dimensionless scalarv(~r, t), called theoptical
disturbancethat is proportional to one component, e.g.Ex, of the electric field vector~E of the electro-
magnetic wave. The orthogonal component,Ey, can be treated independently. It is customary to write
v(~r, t) as a complex quantity. However, the physically relevant part representing the electromagnetic
wave is the real part.

A monochromatic, plane wave propagating along the z-axis ofa cartesian coordinate system is then
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described by

v(z, t) = v0e
−i(ωt−kz) , (1)

with ω = 2πν andk = 2π/λ, whenν is the frequency andλ the wavelength of the monochromatic
wave.

To discuss the propagation of light in space it is convenientto introduce the time independent dimen-
sionlessamplitudeV (z) at frequencyν so that the monochromatic optical disturbance can be written
as

v(z, t) = V (z) e−iωt . (2)

The intensity is the quantity that we usually measure with optical detectors. It is related to the
energy flow densitygiven by the Poynting vector~S = ~E× ~H. The Poynting vector is perpendicular both
to ~E and ~H, and it points into the direction of propagation of the electromagnetic wave, which is the
z-direction in our example of a plane wave.

The Poynting vector oscillates with twice the frequencyν of the electromagnetic wave, which is
about 1015 Hz in the visible part of the spectrum. Since the temporal resolution of the available detectors
is much lower than 10−15 sec, one can only measure the time average of the Poynting vector defined as

< Sz >= lim
T→∞

1

2T

∫ T

−T
Sz dt . (3)

The time average of the Poynting vector is called theflux (in astronomy) or theirradiance(in radiometry)
of the electromagnetic wave in units of W/m2. The measurable quantity with an optical detector is the
integral of the flux over the detector area, i.e. the power in units of Watt.

In the notation with the dimensionless optical disturbancev(z, t) we define the dimensionlessinten-
sity as the time average of the productvv∗

I(z) :=< v(z, t)v∗(z, t) >= lim
T→∞

1

2T

∫ T

−T
v(z, t)v∗(z, t) dt = v2

0 . (4)

The intensity is a dimensionless quantity that is proportional to the flux< Sz > and, thus, proportional
to the signal that is measured with optical detectors.

In terms of the amplitudeV (z) the intensity, using (2) and (4), is written as

I(z) := |V (z)|2 . (5)

In the case of polychromatic light, the linear superposition of individual monochromatic waves
forms the polychromatic optical disturbance. We introducethe time independentspectral amplitude
V (z, ν) (compare to (2)) such that it is

v(z, t) =

∫ ∞

0
V (z, ν) e−i2πνt dν . (6)

V (z, ν) has the dimension of Hz−1.
Thespectral intensity– sometimes called thepower spectral density– I(~r, ν) is defined such that it

is

I(z) =

∫ ∞

0
I(z, ν) dν . (7)

The dimension ofI(z, ν) is Hz−1. The spectral intensity is proportional to theflux densityin units of
W/m2/Hz. In astronomy, a common unit for the flux density is 1 Jansky (Jy) = 10−26 W/m2/Hz.

Hint: With the polychromatic intensityI(z) being the integral of the spectral intensitiesI(z, ν), the
propagation of polychromatic light through space and through optical systems can be treated by first
considering the monochromatic case and then adding up the spectral intensities at the very end of the
propagation process. This is sometimes helpful if the number of integrals starts being overwhelming.
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4 Young’s Experiment

This is the classical diffraction experiment named after Thomas Young who conducted it in 1802, pro-
viding the experimental cornerstone for the demonstrationof the wave nature of light. In its simplicity it
is perfectly suited to explain the concept of spatial interferometry.

x

r2

r1 zz = z1

BB

ξ

α

OPD = α B

Q(x)

Aperture Plane Plane of Observation

α′   0

OPD′ = α′   0 B

Figure 2: The geometry of Young’s experiment in a plane across the pinholes. A monochromatic plane
wave from an on-axis point at a large distance illuminates the two pinholes separated by a distanceB,
called thebaseline, in the aperture plane. For small angles, it isα = x/z1 with x the coordinate ofQ, the
point of observation. The differencer1 − r2 is called the optical path difference (OPD), with OPD= αB
for smallα. The OPD is related to the difference in arrival timeτ between the light from the two pinholes
by τ = OPD/c. A plane wave from a point source atα′

0 is also displayed.

Young illuminated a screen with two pinholes by light from a single point source at a large distance.
By passing through the pinholes the light was diffracted andthe waves from the two pinholes interfered.
On a second screen, in the plane of observation, the diffraction pattern could be observed showing the
characteristic fringe pattern. In Fig. 2 the experiment is depicted schematically for an illuminating point
source at very large distance from the screen so that an approximately plane wave, withV (ξ) = V0,
illuminates the two pinholes. A plane wave from a light source at an angleα′

0 is also displayed.
The amplitudeV at pointQ as a function of diffraction angleα in the plane of observation at distance

z1 is then the sum of the two spherical waves originating from the pinholes,

V (α) =
V0

r1
eikr1 +

V0

r2
eikr2

=
V0

z1
eik(r1+r2)/2 2 cos(k(r1 − r2)/2). (8)

ri is the distance between an individual pinhole and the pointQ, with the approximationr1 = r2 = z1

for the amplitudesV0/ri of the spherical waves. The difference between the optical path lengths,r1−r2,
is called the optical path difference, OPD.

The intensity is the squared modulus of the amplitude,

I(α) = |V (α)|2 =

(

V0

z1

)2

2
(

1 + cos(k(r1 − r2))
)

= I0

(

1 + cos(kαB)
)

, (9)

with I0 = 2(V0

z1
)2. This intensity distribution is called thefringe pattern, when the fringe spacing, the

distance between the maxima of the cosine function, isλ/B (see Fig. 3a). The notation for the fringe
spacing in milli arcsec (mas),α/mas = 206λ/µm

B/m , with λ in µm is sometimes quite handy.
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The OPD,r1 − r2 = αB, is at the same time a difference in arrival time called the time delayτ
between the light from the two pinholes, withτ = αB/c andc the speed of light. We will see later that
the diffraction pattern for increasing diffraction anglesα – corresponding to increasing time delaysτ –
is constrained by the temporal coherence of the incoming light.

For a light source at positionα′
0 we have to add OPD′ = α′

0B to r1 − r2 obtaining the total OPD
(α + α′

0)B. This results in a fringe pattern that is shifted by−α′
0, yielding

I(α) = I0

(

1 + cos(k(α + α′
0)B)

)

. (10)

Thevisibility , V, is defined as the contrast of the fringe pattern. The monochromatic fringe patterns
(10) have an excellent contrast since the intensity oscillates between 0 and 1. This can be expressed more
formally by defining the visibility as

V =
Imax − Imin

Imax + Imin
. (11)

With Imin = 0 andImax = 1, the contrast of the fringe pattern isV = 1.
Spatial interferometry is about measuring the contrast of fringes. Hence, we should have a closer

look at the result of Young’s experiment. A contrast of 1 in a fringe pattern, i.e. perfect constructive and
destructive interference in its maxima and minima, impliesthat the light waves from the two pinholes are
perfectly coherent. In fact, the plane monochromatic wave illuminating the screen with the two pinholes
and, thus, the light emerging from the pinholes are perfectly coherent.

The termcoherenceis linked to the existence of interference phenomena in diffraction experiments
like Young’s experiment. A fringe pattern with a good contrast requires a good coherence between the
light waves from the two pinholes. Light of perfect coherence causes a fringe pattern with a contrast of
1 as stated above. If there is no coherence between the light from the pinholes, there is no fringe pattern
but only a homogeneous illumination as a result of the diffraction of light at each individual aperture.
Then, the light is called incoherent.

It should be emphasised that by measuring the contrast of thefringe pattern in the plane of observa-
tion we determine the coherence in the aperture plane with the two pinholes. Although this sounds trivial
at this stage we will see later that this has important repercussions.

Temporal coherence
First, we discuss the effect of a finitespectral bandwidth∆ν of the light source. The resulting fringe
pattern is formed by adding up interference patterns like (9) at different frequencies to obtain the observed
intensity distribution. This is displayed in Fig. 3b for theK-band,1 with 2.2±0.2µm, ∆λ = 0.4µm and
a baselineB of 10 cm. For zero OPD, atα = 0, all wavelengths have an intensity maximum. This is why
this fringe is called thewhite-light fringe. The position of the first minimumαmin = λ/(2B) or OPD
= λ/2 is then wavelength dependent, as well as the positions of thefollowing maxima and minima.

This effect reduces the contrast of the resulting polychromatic fringe pattern (black curve in Fig. 3b)
for increasing diffraction anglesα. Sinceα is related to the difference in arrival time, the time delayτ ,
throughτ = αB/c, this effect could be reformulated by stating that the contrast of the resulting fringe
pattern is reduced with increasingτ . That time delay that is related to the quasi loss of fringe contrast
is called the coherence timeτc, which is proportional to the reciprocal of the spectral bandwidth ∆ν.
Consequently, the coherence length is defined asl0 =c/τ0. The exact relationship depends on the form
of the spectral band.

The number of fringes visible in a fringe pattern is thus limited to about2λ/∆λ since the diffraction
angle when the fringes have faded isα = ±τcc/B = ±1/∆ν λν/B = ±ν/∆ν λ/B. With a fringe
spacing ofλ/B, and∆ν/ν = ∆λ/λ we arrive at a number of2λ/∆λ fringes.

1The atmosphere transmits only certain bands in the infrared. One frequently used band in the near infrared is theK-band
at 2.2±0.2µm. Most of the numerical examples will be given for this band.
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Spatial coherence
While the spectral bandwidth affects the temporal coherence, the size of the light source affects the fringe
contrast and, thus, the spatial coherence of the light in theaperture plane. First we take an assumption on
the nature of the light source. We assume that the source is spatially incoherent, meaning that each point
on its surface radiates independent, i.e. uncorrelated, from its neighbour. A thermal source like a star is
a typical example of an incoherent source. Then we compute the monochromatic fringe pattern for each
source point using (10). Having an incoherent light source we add up the individual fringe patterns, i.e.
the intensity distributions, that are slightly shifted against each other. The result is a fringe pattern (black
curve) with reduced contrast as displayed in Fig. 3c forλ = 2.2µm.
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Figure 3: Summary of the influence of source size and spectralbandwidth on the fringe pattern. The
pinhole separation, the baselineB, is 10 cm in all figures. In (a) an individual fringe pattern for an
observing wavelength ofλ = 2.2µm and a point source is displayed. In (b) theK-band fringe pattern is
shown (black curve) when observing a point source. In (c) the monochromatic illumination of a source
with diameter 2 arcsec produces a fringe pattern (black curve) with reduced contrast . In (d) the resulting
fringe pattern (black curve) inK-band illumination with a 2 arcsec source is displayed. The visibility
is reduced aroundα = 0 due to the source diameter and it is further reduced for increasing diffraction
anglesα due to the finite spectral bandwidth.
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To compute this result, we write the fringe pattern (10) as a function both of the diffraction angleα
and of the position of the source pointα′, I(α,α′) = I0(1 + cos(k(α + α′)B)), yielding the resulting
fringe pattern for a source of diameterα′

0 as

I(α) =

∫ α′

0
/2

−α′

0
/2

I(α,α′)dα′

=

∫ α′

0
/2

−α′

0
/2

I0dα′ +

∫ α′

0
/2

−α′

0
/2

I0 cos(k(α + α′)B) dα′

=

∫

I(α′)dα′ +

∫

I(α′) cos(k(α + α′)B) dα′ , (12)

with I(α′) the source intensity distribution of the source with diameter α′
0, incorporating the integra-

tion limits. The second term is the real part of the complex Fourier transform
∫

I(α′) exp(−ik(α +
α′)B)dα′. We extractexp(−ikαB) since this term does not depend onα′. The remaining expression
∫

I(α′) exp(−ikα′B)dα′ is the Fourier transform of the source intensity distribution I(α′).
In Young’s experiment, the baselineB is the distance between the pinholes. Discussing now a

Fourier transform between the coordinate spacesα′ andB we have to interpretB as a coordinate that is
the distance between any two points in the aperture plane.

In two-dimensional planes, we use coordinate vectors,~α′ in the source plane and~B in the plane of
the difference coordinates.

Denoting the integral over the source intensity byI0 =
∫

I(~α′)d~α′, and the Fourier transform of the
source intensity byµ( ~B), we obtain the fringe pattern of an extended source as

I(~α) = I0

(

1 + Re
(

µ( ~B)e−ik~α· ~B
))

= I0

(

1 + |µ( ~B)| cos(φ( ~B) − k~α · ~B)
)

. (13)

The contrast, i.e. the visibility, of the fringe pattern fora pair of pinholes separated by~B is determined
by |µ( ~B)|. This is whyµ( ~B) is called thevisibility function– in general a complex function with phase
φ( ~B). It is straightforward to see that for|µ( ~B)| = 1 the fringe contrast is 1 and that for a value of zero
there is no fringe pattern, i.e. the contrast is zero. The phaseφ( ~B) defines the position of the central
fringe, called thewhite-light fringe.

Observing with a spatial interferometer, it is exactly the two quantities fringe visibility|µ( ~B)| and
its phaseφ( ~B), that we are chasing.

The definition of the visibility function:

µ( ~B) =

∫

I(~α′)e−ik~α′· ~Bd~α′

I0
(14)

is also known as thevan-Cittert-Zernike theorem. We have deduced it here in a heuristic manner by
interpreting the result of Young’s experiment. One can alsobase the deduction on the general theory
of the propagation of light and on the propagation of its statistical properties described by coherence
functions. We will treat this topic in the next section.

Regarding (14), it is obvious that the visibility functionµ( ~B) is a complex function. Due to the
intensity distributionI(~α′) being real and positive by definition, the modulus|µ| of the visibility is
symmetric and its phaseφ is anti-symmetric:

|µ( ~B)| = |µ(− ~B)| and

φ( ~B) = −φ(− ~B).

The two formulae (13) and (14) are the cornerstones of spatial interferometry. They link the intensity
distribution in the objectI(~α′) through a Fourier transform, (14), to the visibility of the fringe pattern
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(13). The inversion of this argument – measuring the visibilities for many different baseline vectors~B,
and reconstructing the object intensityI(~α′) through a Fourier back transform ofµ( ~B) – was the impor-
tant step to take spatial interferometry from the mere determination of stellar diameters to an imaging
tool of extremely high angular resolution.

Figure 3d shows the fringe pattern for a star with a diameter of 2 arcsec as in Fig. 3c and theK-band
spectrum as in Fig. 3b. The visibility is reduced at~α = 0 because of the finite size of the source and
goes further down for increasing diffraction angle~α. This mixture of spatial and temporal coherence is
unavoidable and sets tight constraints to the data processing since the contrast variation due to the shape
of the source has to be clearly separated from the contrast variation due to the spectral bandwidth. In the
following section, the quasi-monochromatic approximation will be introduced to deal with this problem.

Hint: If the Fourier transform of an intensity distributionI(~α′) as a function of a coordinate differ-
ence~B is too abstract one can always look at the situation in terms of ’fringe pattern per source point
and per wavelength’ and then add up the intensity distributions of these fringe patterns as in (12), if the
source (not the light in the aperture plane!) is spatially incoherent. The same argument was used in
the Sect. 3 when monochromatic intensity distributions were regarded and then summed up to obtain the
polychromatic intensity. This illustrates the equivalence of temporal and spatial coherence that we have
discussed here heuristically. In the next section, the general coherence theory will be used to explain the
phenomena.

5 The Visibility and the Mutual Coherence Function

In the context of Young’s experiment we introduced the coherence as a phenomenon related to the con-
trast of the fringe pattern. Here, we will use a more general definition based on statistical properties.
Before defining the coherence function, the nature of this random process needs to be discussed. So far,
the optical disturbancev has been regarded as a plane or as a spherical wave providing adeterministic
signal throughout the propagation and diffraction process. Now, approaching large celestial bodies emit-
ting (mostly) thermal radiation, their light cannot be regarded as monochromatic and only approximately
as a plane wave. Very close to the surface of a star, it is almost impossible to define a wavefront2 and a
direction of propagation. At a very large distance from the star, a point is a good approximation for its
shape, and a plane wave describes the situation rather well.

In any moment during the propagation process, the optical disturbancev(~x, t) in a given plane at
distancez, that is fed by light from individual, independently radiating, polychromatic points on the star,
takes on random values that fluctuate typically at timescales 1/ν, the reciprocal of the average frequency.
If one could take a series of snapshots with femto second exposure time, the pictures would all look
different. However, these fluctuations average out over time intervals longer than 1/ν. Thus, snapshots
with longer exposure time would all look the same.

We will regard the individual wavefronts as possible realizations or members of the ensemble of
the random process, and the optical disturbancev(~x, t) as the random variable. We will make two
assumptions on the random process that will make our life much easier.

First, we assume that the random process is statistically stationary in time. This means that the
statistical properties are the same all over the ensemble, i.e. that the average is independent of the absolute
moment in timet when it is taken and that the correlation only depends on the time differencet1 − t2.

Second, we assume that the statistics over one particular wavefront in a given moment is the same as
the statistics at a given point waiting a ’long’ time. In other words, the statistics, e.g. the average, over
the complete wavefront as an individual realization of the random process can be replaced by the average
over many different realizations that appear in temporal succession. A ’long’ time providing the average

2A wavefrontis the virtual surface of the same phase of a propagating wave.
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over a sufficient number of realisations is defined asT ≫ 1/ν, i.e. much longer than the oscillation of
the electromagnetic wave at the average frequency.

If these two conditions are met, the process is calledergodicand the ensemble average can be re-
placed by the time average.

Themutual coherence function (MCF)is the critical quantity for understanding spatial interferom-
etry. It is the second order correlation function of the optical disturbance as a function of time difference
and spatial coordinates. Remembering that the optical disturbance is proportional to one component of
the electrical field vector, one could say that we determine the correlation of two electrical field vectors
at two points in space and two points in time.

Due to the ergodic statistical process, the MCF is defined as atime average:

Γ(~x1, ~x2, τ) := < v(~x1, t + τ)v∗(~x2, t) > (15)

= lim
T→∞

1

2T

∫ T

−T
v(~x1, t + τ)v∗(~x2, t) dt , (16)

where~xi are the coordinate vectors andτ is the time difference.
With (4), it is straightforward to see that the intensity canbe expressed by

I(~x) = Γ(~x, ~x, 0) . (17)

In the case ofincoherent light the correlation between the optical disturbances is zero, they are
completely independent. The MCF on the surface of a thermal source for instance is then given by

Γ(~x1, ~x2, τ) = I(~x1)δ(~x1 − ~x2)δ(τ) , (18)

whenδ(.) denotes theDirac functionhaving zero value unless the argument is zero. In this case, illus-
trating the independence of the optical disturbances, the correlation is zero unless the value at the same
position (~x1 = ~x2) and at the same moment in time (τ = 0) is taken. Thus, an incoherent source is
completely described by its intensity.

The other extreme is that ofcoherent light, when the optical disturbances are well defined – for
instance a plane wave – throughout space and time, and the MCFcan be replaced by the product of the
optical disturbances,

Γ(~x1, ~x2, τ) = v(~x1, t + τ)v∗(~x2, t) = V (~x1)V
∗(~x2)e

−2πν0τ . (19)

Using (2), the optical disturbances are replaced by the amplitudesV yielding the MCF as the product
of amplitudes at positions~x1 and~x2 multiplied by the complex exponential as a function of the time
differenceτ .

The MCF in the immediate neighbourhood of the light source, e.g. close to the surface of a star, is
different from the MCF at a very large distance, for instancesome light-years away. This means that
the statistical properties of the light, its coherence, change while the light propagates. In this sense, we
speak of the propagation of the MCF keeping in mind that it is actually the electromagnetic wave that
propagates.

Thepropagation of the MCF in space is described by applying a formalism that was derived from
the Rayleigh-Sommerfeld diffraction formula. To simplifythe propagation process, we assume that the
light sources (e.g. stars) are incoherent and that all involved angles are small. The latter is called the
Fresnel approximation. In addition, we apply thequasi-monochromatic approximationwhen (1) the
spectral bandwidth∆ν is assumed to be much smaller than the average frequencyν0 and (2) the time
differenceτ is much smaller than 1/∆ν.

We can now write the MCF in the aperture plane as a function of the coordinate difference,~B, of two
points as

Γqm( ~B, τ) = G(ν0)

∫

I(~α′)e−ik0
~B·~α′

d~α′ e−i2πν0τ , (20)
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with G(ν0) the source spectrum atν0.
It is very important to note that, due to the light source being incoherent, the MCF only depends on

one coordinate,~B, which is the coordinate difference vector between two points in the aperture plane.
The absolute positions of the two points are not relevant.

Not very surprisingly, the MCF in quasi-monochromatic approximation, (20), is very similar to the
MCF of coherent light, (19). However, while the dependence on the time differenceτ is exactly the same
– as long asτ is much smaller than1/∆ν – the dependence on the difference coordinate~B is different.
The latter, describing the spatial coherence, depends on the angular shape of the sourceI(~α′). Therefore,
the form of the MCF with respect to the spatial coordinate~B varies with the distance of the light source
from the aperture plane, while it is invariant with respect to the temporal coordinateτ . This is also true
if we go beyond the quasi-monochromatic approximation.

Thus, the spatial coherence of the light changes when it propagates in space while the temporal
coherence remains untouched.

Regarding the MCF atτ = 0,

Γqm( ~B, 0) = G(ν0)

∫

I(~α′)e−ik0
~B·~α′

d~α′, (21)

and calibrating it by the average intensityI0 we obtain the van Cittert-Zernike theorem (14) describing
the propagation of the mutual coherence function from the source plane into the aperture plane by Fourier
transforming the intensity distributionI(~α′) to obtain the complex visibility functionµ:

µ( ~B) =
Γqm( ~B, 0)

I0
=

G(ν0)
∫

I(~α′)e−ik0
~B·~α′

d~α′

G(ν0)
∫

I(~α′) d~α′
, (22)

with ~B the difference coordinate vector in the aperture plane,~α′ the angular coordinate vector in the
source plane,ν0 the average frequency, andI(~α′) the source intensity distribution.

By rigorous application of the coherence theory we have arrived at the same formula, the van Cittert-
Zernike theorem, for the propagation of the MCF, as by discussing Young’s experiment in Sect. 4.

We can now proceedfrom the aperture plane into the plane of observationby computing the prop-
agation of the MCF using again the Rayleigh-Sommerfeld diffraction formula. Since we only measure
the intensity, we reduce the MCF in the plane of observation to the intensity, yielding

I(~α) =
(

I0 + Re[Γqm( ~B, τ ]
)

=
(

I0 + Re[Γqm( ~B, 0)e−i2πν0τ ]
)

= I0

(

1 + Re[µ( ~B)e−i2πν0τ ]
)

= I0

(

1 + |µ( ~B)| cos(φ( ~B) − 2πν0τ)
)

, (23)

with ν0τ = ~α· ~B/λ. We found the same expression for the fringe pattern in the plane of observation when
discussing Young’s experiment in monochromatic illumination (13). We note again, that by measuring
the intensity distribution of the fringe pattern in the plane of observation we obtain information on the
MCF Γqm( ~B, τ) in the aperture plane.

The fringe pattern in monochromatic illumination is displayed in Fig. 3c where the fringe pattern has
a constant visibility for all diffraction angles. Formally, (23) also describes a fringe pattern that does not
lose contrast with increasing diffraction angleα resp.τ . However, we have to keep in mind that the quasi-
monochromatic approximation is restricted to very smallτ only. Regarding theK-band fringe pattern
in Fig. 3d this can be explained. TheK-band,2.2 ± 0.2µm, with ∆λ = 0.4µm fulfils the condition of
a narrow bandwidth. As long as we stay on the central fringe, i.e. very small diffraction angle and very
smallτ , we can attribute its contrast loss in very good approximation to the spatial coherence only (see
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Fig. 3d). For largeα, the fringe pattern can no longer be described by (23) since the contrast loss is not
accounted for in the quasi-monochromatic approximation.

Thus, the contrast and the position of the central fringe arevery good approximations for the visibility
|µ( ~B)| and its phaseφ( ~B) given by the Fourier transform of the source intensityI(~α′) as stated by the
van Cittert-Zernike theorem.

The two pinholes can be regarded as an instrument to measure the coherence properties by probing
the wavefront with two pinholes, and determining the spatial coherence as the visibility of the fringe
pattern. This result is interesting in two respects. First,we found out how to relate a measurable quantity
to the complex visibility function. Second, by doing so, we derive the visibility function in the aperture
plane from characteristics of the intensity distribution (fringe visibility and centre fringe position) in the
plane of observation.

Hint: Don’t be overwhelmed by all the theory. What remains from thefull framework of propagating
coherence functions is (1) an incoherent source that is fully described by its intensity, (2) the Fourier
transform of this intensity distribution that provides thecoherence function in the aperture plane, and (3)
again the intensity in the plane of observation since we cannot measure anything else.

The important step is to conclude from the intensity distribution of the diffraction pattern, namely
its visibility, on the coherence function in the aperture plane. Thus, we only deal with the coherence
function in the aperture and regard intensities elsewhere.

The important point is the connection between the shape of the object intensity distribution and the
visibility for varying baselines.

5.1 Example: Venus

An example illuminates the situation: we model Venus as a uniform disk with angular diameterα′
0 vary-

ing between about 15 and 45 arcsec depending on the mutual positions of Venus and Earth. The circular
intensity distribution is described by thecirc-function that is defined as circ( |~x|R ) = 1 if |~x| ≤ R and 0

elsewhere. A circular intensity distribution is then represented byI(~α′) = (π(α′
0/2)

2)−1 circ
(

α′

α′

0
/2

)

with α′ = |~α′|.
We compute the visibility function as the Fourier transformof I(~α′) yielding

µ( ~B) =
1

π(α′
0/2)

2

∫

circ

(

α′

α′
0/2

)

e−ik0
~B·~α′

d~α′

= Besinc(k0Bα′
0/2), (24)

with theBesinc-functiondefined as Besinc(x) = 2 J1(x)/x, andJ1(x) the first orderBessel function.
Figure 4 displays the visibility function for Venus’ smallest angular diameter ofα′

0 = 15 arcsec as a
function of the baseline in mm. The first zero of the visibility function is reached atB = 1.22λ/α′

0 =
37 mm, orB/mm = 252 λ/µm

α′

0
/arcsec . For longer baselines the visibility function slowly oscillates between

negative and positive values with decreasing amplitude.
One can now understand the effect of a visibility function that is shaped like a Besinc-function (24).

The visibility function shows up in the varying visibility of the fringe patterns in Fig. 4. Each horizontal
line shows a fringe pattern for an individual pinhole separation B whose visibility is determined by the
modulus|µ( ~B)| of the visibility function.

The Besinc-function is a real function with zero phase. However, working with the modulus of the
visibility function, negative values of the Besinc-function have to be considered by a phase ofφ = π,
since |µ( ~B)|eiπ = −|µ( ~B)|. The fringe pattern is shifted byπ, producing a black fringe atα = 0
for pinhole separations between 37 mm and 67.5 mm when the Besinc-function has negative values (see
Fig. 4).
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Figure 4: Fringe patterns of Venus in Young’s experiment. Onthe left, the intensity distributions along
horizontal lines display the fringe pattern for pinhole separationsB = | ~B| between 10 and 80 mm. The
fringe spacing isλ/B. The light source illuminating the pinholes is Venus with a uniform disk diameter
of 15 arcsec. The spectral band is theK-band (2.2±0.2µm), i.e. λ/∆λ = 5.5 . The finite spectral
bandwidth makes the fringe visibility disappear for diffraction anglesα = |~α| larger than about5.5λ/B
i.e. there are about 11 fringes in the fringe pattern. The fringe spacing decreases with increasing pinhole
separation, and the fringe visibility is reduced to zero atB = 1.22λ/α′

0 = 37 mm. For 37 mm≤ B ≤
67.5 mm, the fringe pattern inverts its sign displaying a black fringe atα = 0. The visibility function
µ( ~B) as a function of pinhole separationB follows a Besinc-function that is displayed on the right.

6 Image Formation

While Young’s experiment is a useful tool to demonstrate coherence effects, in practise the apertures of
a spatial interferometer are considerably larger than pinholes, keeping in mind that sensitivity is one of
the performance parameters of an astronomical observation.

Before discussing the case of combining the light from two individual telescopes we will discuss the
case of image formation in a single telescope.

6.1 Image Formation in a Single Telescope

We start again by regarding the light from a single point source at a large distance on axis. A plane wave
with amplitudeV (~ξ) arrives at the apertureA(~ξ), with ~ξ the coordinate vector in the aperture plane.
We denote the wave leaving the aperture byVap(~ξ) = V (~ξ)A(~ξ). The light is diffracted at the aperture
producing theFraunhofer diffractionpattern in the plane of observation that we can compute by

V (~α) =

∫

Vap(~ξ) e−ik~α·~ξd~ξ . (25)

Fraunhofer diffraction can be observed at a very large distance behind the aperture. If we place a lens
in the aperture we find the Fraunhofer diffraction pattern inthe focal plane of the lens at a distancef
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from the aperture. This is the situation that we have in optical systems. The intensity distribution of the
diffraction pattern is given byI(~α) = |V (~α)|2.

In the theory of linear systems, the diffraction pattern represents the response of the optical system
to an impulse, in this case the approximately point-like intensity distribution of an unresolved star. This
response is called thepoint-spread function(PSF) of the optical system. Since the connection between
the aperture of the optical system and its PSF is given by a Fourier transform, the formalism described
in this section is also calledFourier optics.

For a circular aperture as the most common case of a telescopeaperture with diameterD we write
A(~ξ) = circ

(

ξ
D/2

)

, ξ = |~ξ|, with the area of the circular aperture given byA0 = π(D/2)2. A(~ξ) is

illuminated by a point source at infinity withV (~ξ) = V0 in the aperture plane, settingV0 = 1. Using
(25), the diffraction limited amplitude in the focal plane can be written as

V (~α) =

∫

circ

(

ξ

D/2

)

e−ik~α·~ξ d~ξ

= A0 Besinc(kαD/2), (26)

with α = |~α|. The result of the Fourier transform of the circ-function isthe Besinc-function.
In telescopes, the intensity distribution of the diffraction limited PSF is called theAiry disk. The

squared modulus of the amplitudeV (~α) yields the Airy disk as

PSF(~α) = V (~α)V ∗(~α) = A2
0 Besinc2(kαD/2). (27)

The first minimum of the PSF is atαmin = 1.22λ/D, or αmin/mas = 252λ/µm
D/m , with α in milli arcsec

(mas), the observing wavelengthλ in µm and the telescope diameterD in m. For a binary star with
a separationαmin, the resulting image, which is the sum of two individual Airydisks, shows a local
minimum between the peaks of the Airy disk. Therefore the twostars of the binary can be identified as
individual objects in the image. This criterion of angular resolution, when the smallest resolvable angle
is αmin, is called theRayleigh criterionof resolution of a telescope.

Discussing the visibility function in the last section, we found a Besinc function as visibility function
in the aperture plane assuming that the light source at a large distance was circular. Here, the Besinc
function describes the intensity distribution in the focalplane of a telescope, assuming that a point source
illuminates a circular aperture, an altogether different physical quantity. One has to carefully consider
which quantity is discussed in order to avoid confusion.

The imaging processcan now be described by summing up the PSF of each individual object point
– all slightly shifted according to the position of the object point – assuming that the object is incoherent
and, thus, the intensities add up. In Sect. 4 discussing the loss in fringe contrast in Young’s experiment
when illuminating the pinholes with an extended object we used the same principle.

Denoting the object intensity distribution byO(~α′) we obtain the image intensity distribution as the
integral of individual PSF weighted by the object intensityat each object point:

I(~α) =

∫

O(~α′) PSF(~α − ~α′) d~α′

= O(~α) ∗ PSF(~α). (28)

This operation is a convolution of the object intensityO(~α) with the PSF, denoted by∗.
If the object has some very fine structure a rather broad PSF might wash out the detail. Or, if there

is a binary star with a separation smaller than the Rayleigh limit of 1.22λ/D, the image intensityI(~α) is
undistinguishable from a single star. By the same token, onecannot determine the diameter of a star if
its disk is much smaller than the PSF. Thus the width of the PSF, or its reciprocal the diameter D of the
aperture, determine the angular resolution. We will see in the following that combining the light from
two apertures increases the limit of resolution proportional to the baseline that is much larger than the
individual aperture.
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6.2 Image Formation in a Spatial Interferometer

We begin by regarding an aperture that consists oftwo pinholes like in Young’s experiment. This can be
described by twoδ-functions atξp and at−ξp:

A(~ξ) = δ(~ξ − ~ξp) + δ(~ξ + ~ξp).

In Young’s experiment we let a plane wave pass through the pinholes and we computed the diffraction
pattern by having two spherical waves propagate from each pinhole. In the formalism of the imaging
process we use (25) to calculate the aperture in the focal plane as

V (~α) =

∫

(δ(~ξ − ~ξp) + δ(~ξ + ~ξp)) e−ik~α·~ξd~ξ

= e−ik~α·~ξp + e+ik~α·~ξp = 2cos(k~α · ~ξp) .

The intensity distribution of this diffraction pattern shows the familiar fringe patternI(~α) = 4 cos2(k~α ·
~ξp) = 2(1 + cos(k~α · ~B)) with ~B = 2~ξp the baseline vector, like in (9).

Enlarging the pinholes to smallsub-apertures with diameterD, we write the aperture as a convo-
lution of a sub-aperture with twoδ-functions,

A(~ξ) = a(~ξ) ∗ (δ(~ξ − ~ξp) + δ(~ξ + ~ξp)),

yielding the amplitude in the focal plane as

V (~α) =

∫

a(~ξ) ∗ (δ(~ξ − ~ξp1) + δ(~ξ − ~ξp2)) e−ik~α·~ξd~ξ .

This formula can be simplified since the Fourier transform ofa convolution is the product of the
Fourier transform of the individual functions. If we assumecircular sub-apertures of diameterD we
obtain again a Besinc function for the Fourier transform ofa(~ξ), and a cosine function for the Fourier
transform ofδ(~ξ − ~ξp) + δ(~ξ + ~ξp),

V (~α) =

∫

a(~ξ) e−ik~α·~ξd~ξ ×

∫

(

δ(~ξ − ~ξp) + δ(~ξ + ~ξp)
)

e−ik~α·~ξd~ξ

= A0 Besinc(kαD/2) × 2 cos(k~α · ~B/2) . (29)

The intensity distribution in the focal plane is given by|V (~α)|2. Since this is the intensity distribution
for a point source at infinity, we call it thePSF of the interferometer:

PSF(~α) = |V (~α)|2 = 2A2
0 Besinc2(kαD/2)(1 + cos(k~α · ~B)) . (30)

The PSF consists of the Besinc-function of an individual sub-aperture that is multiplied by the fringe
pattern of two pinholes. Since the Besinc-function is widerthan the fringe pattern, the PSF looks like
a fringe pattern with the Besinc-function as an envelope, see Fig. 5. If the sub-apertures were infinitely
small, the Besinc-function would be infinitely wide and we would see a fringe pattern like in Fig. 3.

Before writing down the final image intensity distribution we have to distinguish two cases, that of
a large object – larger than the Besinc-function of the PSF – and that of a small object that looks like a
point-source when observing it with an individual telescope.

Assuming we observea binary star that is clearly resolved by an individual telescope, we would
see two distinct PSF, the image of this binary, in the image plane. If we observe this binary with an
interferometer combining two of these telescopes, we wouldagain see two PSF but now each PSF has
fringes as described by (30). Figure 6 shows the image intensity distribution of a stellar cluster, with
each PSF displaying a fringe pattern.
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Figure 5: The PSF of a spatial interferometer (30) with two sub-apertures ofD = 8 m and a base-
line B of 100 m in the K-band, withλ = 2.2±0.2µm. The radius of the Airy disk – only the central
core is displayed – is1.22λ/D = 69 milli arcsec and the fringe spacingλ/B = 4.5 milli arcsec. The
consequence of observing a spectral band instead of a singlespectral line is a loss of contrast after
λ/∆λ = 2.2/0.4 = 5.5 periods, resp. after about±25 milli arcsec from the white-light fringe at the
centre.

Since the fringe patterns in the two PSF do not overlap we cannot determine the influence of the
binary onthevisibility of the fringe pattern. One could also say that theinformation that we are seeking
– the separation of the binary – is already available by the distance between the two separated PSF.

What we do find in the visibility of each individual fringe pattern is information on the size or shape
of each individual star of the binary. We could observe the fringe pattern in each PSF individually
ignoring the other PSF. This is in fact what is done very oftenin spatial interferometry, when the PSF is
fed into an optical fibre. This technique has the advantage that the influence of atmospheric turbulence
is greatly reduced.

Thus, the coarse detail of the object, in this case the separation of the binary, is determined by
an individual telescope since the PSF is smaller than the separation. The fine detail, the shape of the
individual star, which is much smaller than the PSF, cannot be determined by an individual aperture, but
it is measurable through the visibility of the fringe pattern.

Using the assumption that ourobject intensity distribution O(~α) is much narrower than the PSF
of an individual sub-aperture we write the convolution of object intensity and PSF as

I(~α) = O(~α) ∗ PSF(~α)

≈ 2A2
0Besinc2(kαD/2)

(

O(~α) ∗ (1 + cos(k~α · ~B))
)

.

Thus, we have a convolution of the object intensityO(~α) with a fringe pattern proportional to 1+ cos()
like in Young’s experiment. The resulting fringe pattern isenveloped by the Besinc-function.
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Figure 6: Simulated intensity distribution in the image of the Large Binocular Telescope (LBT) on
Mt. Graham in Arizona. The parameters are: telescope aperture D = 8.4 m, baselineB = 14.4 m,
λ = 2.2 ± 0.2µm (K-band). The first minimum of the PSF is at1.22λ/D = 66 mas and the fringe
spacing is 32 mas. Each star in this crowded field shows an Airydisk with fringes. The inset displays an
individual PSF. Due to the combination of values forD andB, there are only about three visible fringes
across the Airy disk, and the loss of contrast due to the widthof the spectral band is barely visible.
Courtesy T. Herbst, MPIA, Heidelberg

For Young’s experiment in Sect. 4 we computed in (12) the resulting fringe pattern as an integral
of individual fringe patterns that were shifted according to the respective source point. Formally, this is
identical to the convolution between the object intensity and the fringe pattern. The result was a fringe
pattern with a visibilityµ( ~B) determined by the Fourier transform of the object intensity. Inserting this
result here we obtain the image intensity distribution in a spatial interferometer as

I(~α) = 2O0A
2
0 Besinc2(kαD/2)

(

1 + |µ( ~B)| cos(φ( ~B) − k~α · ~B)
)

, (31)

with O0 =
∫

O(~α′)d~α′ and

µ(B) =

∫

O(~α′)e−ik~α′· ~Bd~α′

O0
, (32)

the van-Cittert-Zernike theorem.
These two formulae form the basis of our experiment. As long as the object is smaller than the

PSF of an individual telescope, given by the square of the Besinc-function, we observe a fringe pattern
with a visibility according to the van-Cittert-Zernike theorem. Combining visibility measurements for
many baselines~B allows to reconstruct the object intensityO(~α′) as the Fourier back-transform ofµ( ~B).
The smallest detail that can be resolved in the object is thendetermined by the longest baseline of all
measurements, which in turn is equivalent to the finest fringe pattern with fringe spacingλ/B. One
should note that the baselines need not only vary in length but also in orientation since we have two-
dimensional images.

The coordinate space that is opened by different baselines~B – remembering that~B is the difference
coordinate between the two sub-apertures – is not the aperture plane but a virtual plane called theuv-
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plane, when u and v are the two coordinates of the plane. A vector in the uv-plane is given by the baseline
calibrated by the wavelength,(u, v) = ~B/λ. One should emphasise again that only the distance and the
orientation of two telescopes determine the coordinate in the uv-plane, not their absolute position.

Hint: The step from Young’s experiment with an unlimited fringe pattern to an interferometer with a
fringe pattern within an Airy disk in the image plane is oftena source of confusion. One should keep the
following points in mind. We are dealing with diffraction patterns. These can be caused by pinholes, like
in Young’s experiment, or by real sized apertures, like in a telescope or spatial interferometer. Increasing
the size of a pinhole from ’zero’ to a real aperture decreasesthe size of the diffraction pattern from
’infinite’ to the limited size of e.g. an Airy disk in the case of a circular aperture. Lenses allow observing
the diffraction pattern in their focal plane instead of at a very large distance.

Combining two pinholes or two telescopes adds fringes to thesingle aperture diffraction pattern.
Thus, the unlimited fringe pattern is confined to the Airy disk.

The imaging aspect comes in when looking at Airy disks created by light sources at different (angular)
positions. The resulting distribution of Airy disks in the focal plane resembles – in terms of position and
relative brightness – the distribution of the light sources, therefore it is called the image.

If the light sources are so close that their Airy disks are undistinguishable from a single Airy disk,
they cannot be resolved as individual sources. However, in aspatial interferometer the contrast of the
fringe pattern in the resulting Airy disk might be affected by the distribution of the sources and we can
resolve the object by processing the fringe contrast resp. the fringe visibility.

6.2.1 Example: A Narrow Binary Star

In Sect. 5.1, we computed the visibility function of Venus asan example for an object shaped like uniform
disk. Here, we will discuss the visibility function of a narrow binary star with an intensity distribution
I(~α′) = 1

2(δ(|~α′ − ~α′
s/2|) + δ(|~α′ + ~α′

s/2|)). The separation vector of the binary is~α′
s that is supposed

to be much smaller than the PSF of an individual sub-aperture.
The visibility function is computed by Fourier transforming the intensity distribution obtaining

µ( ~B) =
1

2

∫
(

δ

(
∣

∣

∣

∣

~α′ −
~α′

s

2

∣

∣

∣

∣

)

+ δ

(
∣

∣

∣

∣

~α′ +
~α′

s

2

∣

∣

∣

∣

))

e−ik0
~B·~α′

d~α′

= cos(k0
~B · ~α′

s/2). (33)

Writing the visibility in complex notation, the negative values of the cosine are accounted for by a phase
of φ( ~B) = π like in Sect. 5.1.

We have now the slightly confusing situation that the visibility function is a cosine function that,
when inserted into (31), is multiplied by the cosine describing the fringe pattern. What does this mean?
The visibility function determines the contrast of the fringe pattern. Thus, for very small values of the
baseline the cosine has values close to 1 and the fringe pattern has almost maximum contrast as in Fig. 5.

Assuming that the baseline vector is parallel to the separation vector, the visibility function will
decrease with increasing baseline, the fringes will disappear and come back again for another maximum
for a baseline ofB = λ/α′

s. For this baseline the cosine has the value−1, which means that there is a
minimum in the fringe pattern where there was a maximum before and vice versa.

Further increasing the baseline brings back another swap ofblack and white fringes and another
maximum of the visibility forB = 2λ/α′

s. If the stars were truly point-like this periodicity would be
unlimited. In the real world (and in our experiment) when stars have a finite size we have to compose
our object of two disk-like structures both with diameterα′

0 that result in a visibility function of

µ( ~B) = Besinc(k0
~B · ~α′

0/2) cos(k0
~B · ~α′

s/2). (34)

This means that the visibility that was varying periodically with the baseline, is now damped by the
Besinc function.
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The last point to be discussed is a baseline that is perpendicular to the binary separation vector. In
this case, the scalar product~B · ~α′

s is always zero and the cosine equal to 1, and the variation of fringe
contrast with the baseline is solely determined by the diameterα′

0 of the individual stars. Thus, observing
a binary with unsuitable baseline orientation would not reveal its binary nature but it would appear like a
single star.

7 Practical Issues

In real spatial interferometers, the main problem is to control the optical path difference (OPD). Given
that OPD variations ofλ move the fringe pattern by one period of the fringe spacing, it is easy to see
that the OPD has to be stable to better thanλ/10 during the exposure time if we want to have a reliable
measurement of the visibility. Otherwise the fringe pattern is simply smeared with randomly reduced
visibility.

The OPD is affected by the optical path before the interferometer – mostly passing through vacuum
but unfortunately also through turbulent air over the last few dozen kilometres – and inside the inter-
ferometer when the light is reflected by many mirrors before it interferes in the focus of the science
camera.

In addition, we must not forget that we observe celestial objects that are in constant (apparent) motion
due to the rotation of the Earth. Thus, the angle between the time dependent position vector~α′ and the
baseline vector~B, and therefore the OPD= ~α′ · ~B are in permanent motion.
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Figure 7: First fringes of the VLTI with two 8-m telescopes onOctober 30, 2001. Each horizontal line
represents the interferometric fringes in the K-band registered during a single scan (resp. exposure). Due
to atmospheric turbulence, the fringes are slightly shifted sideways

This implies that two independent telescopes form the spatial interferometer so that the baseline
vector is immobile, horizontal to the ground. For shorter baselines one can use a common telescope
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mount for the telescopes of the interferometer so that the baseline vector rotates in the same way as the
telescopes, tracking the position vector~α′. In this case the angle between the baseline and the position
vector is constant and the OPD is invariant.

In long baseline interferometers with independent telescopes, the OPD in motion is compensated for
by adding adelay linein the optical path that adds an OPD of exactly−~α′ · ~B. A delay line is an optical
cat’s eye system on rails that is moving with an accuracy of several 10nm over a distance up to 100m
depending on the length of the baseline and on the maximum zenith angle that is used for observations.
Since this kind of high-tech equipment was unavailable in the 1920s, spatial interferometry had been
abandoned until the 1970s when modern interferometry started.

With delay lines, the fringes are kept in a stable position onaverage but the observations still suffer
from random OPD variations due to atmospheric turbulence and vibrations. These random OPD vari-
ations have an amplitude of several microns, resulting in a fringe wobble of several fringes. However,
the power spectrum of the OPD variations shows that the maximum amplitude is at very low frequencies
(≤1 Hz). The tolerable OPD variation of aboutλ/10 has a typical timescale of about 1/10 seconds so
that exposure times in this range produce a fringe pattern that is only moderately smeared.

The fringe patterns in Fig. 7 give an idea about the short timevariations of the fringe positions – look
at the fringe motion from scan to scan – and the long time variations indicated by the total variations over
all scans.

Unfortunately, there is nothing else one can do but reducingthe exposure time. This reduces the
sensitivity to rather bright sources. However, there is a technique that allows observing faint sources at
least in the vicinity of bright stars. This technique, called fringe trackinguses the measurements of the
bright star fringe position to compensate for the OPD variations with a fast moving mirror so that the
fringe motion is stabilised to an acceptable level3. Since the OPD variations are correlated over several
10 arcsec in the sky, a faint star within this distance can be observed taking advantage of the stabilised
fringes using a long exposure time without smearing the fringe pattern. Instead of a few 100 milli seconds
the exposure time can be a few 10 seconds, increasing the sensitivity by a factor of 100. Since two stars
– the bright guide star and the faint science object – are observed this is also called adual-feed system.

Adding some extra equipment, for instance a laser metrologysystem to measure the OPD inside the
interferometer, a dual-feed system allows to determine thephaseφ( ~B) of the visibility functionµ( ~B) so
that we can attempt to reconstruct a real image from the visibility measurements.

8 Visibility Measurement

The number of independent parameters in the reconstructed object intensity is determined by the number
of visibilities (modulus and phase) that are measured. Thus, even a reconstruction of a 10x10 pixel image
of e.g. a galaxy requires about 100 visibility measurements. Given that each baseline requires either to
move the telescopes or to have a sufficient number of telescopes that are conveniently distributed, and that
the baselines have to be distributed equally between the shortest and the longest lengths, one understands
that it is not easy to collect a suitable set of of visibilities. In the jargon of interferometrists this process
of collecting visibility measurements is calledfilling the uv-plane.

Therefore, almost all interferometric observations attempt to fit model parameters rather than re-
constructing an image. The measurement of stellar diameters is a good example for this technique.
By assuming that the shape of the star can be modelled as a uniform disk, the visibility function is a
Besinc-function as displayed in Fig. 4. Then one measurement would be sufficient to determine the one
parameter, the diameter~α′

0 that we are looking for (unless the visibility is very low andcould be either in

3Correcting a signal with an actuator, in this case the fast moving mirror, before the sensor so that the sensor ’sees’ the
corrected signal, is called aclosed-loop system. There are many applications for closed loop systems, for instance telescope
guiding or adaptive optics.
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the first or the second side lobe of the function). More measurements allow to further refine the model by
assuming (the physically justified) limb-darkening effect, i.e. a slight reduction of the intensity towards
larger radii of the disk. On the cover page, the reconstructed shape of Achernar is displayed. Different
orientations of baselines revealed different diameters ofthe star, and it turned out that the star is elliptical
and not circular.

Narrow binaries form another class of objects that can be successfully observed with a few visibility
measurements. A binary has a visibility function that is proportional to a cosine function (see Sect. 6.2.1).
Then we have to make sure that the measurements are unambiguous.

9 Some Further reading

• Florentin Millour, ”All you ever wanted to know about optical long baseline stellar interferometry,
but were too shy to ask your adviser”, http://arxiv.org/PScache/arxiv/pdf/0804/0804.2368v1.pdf.

• Andreas Glindemann, ”Das Sterninterferometer auf dem Paranal”, Physik in unserer Zeit 2003,
34, 2, 64–71

• Course Notes from the 2002 Michelson Interferometry SummerSchool,
http://olbin.jpl.nasa.gov/iss2002/index.html

• Peter R. Lawson (Ed.), ”Principles of Long Baseline StellarInterferometry”, Course Notes from
the 1999 Michelson Interferometry Summer School, http://olbin.jpl.nasa.gov/iss1999/coursenotes.html
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