VLTI Tutorial

The VLTI conceptual design

VLTI Concept...The birth

The Final VLTI Array Layout

- 4 UT's as 'trapezoidal' as possible (wind shadow, ground quality)
 - Baselines 47 130m $\Rightarrow 1.5 \text{ milli arcsec}$
- **30 Stations** for AT's
 - Baselines 8 200 m $\Rightarrow 1 \text{ milli arcsec}$
- Delay Line Tunnel (160 x 8m) positioned to minimize path differences. Can house 8 DL's

- Central combining Lab (20 x 7m) with specific VLTI building / control room
- All elements are located on an 8m grid
- Light travelling underground for high thermal stability (vacuum alternative not selected for cost reasons)

The VLTI Optical Layout

VLTI Tutorial: VLTI Concept & technical aspects, B. Koehler, 20 November 2001, Garching

The telescope family

- The 'Appetizers' (2 Siderostats)
 - Installed early 2001
 - Relocatable in day(s)
 - Primary: 0.4 m
 - Autoguiding only
 - Airy disk (in K): 1.1"

- The 'Workhorses' (3 Auxiliary Tel.)
 - Relocatable in 3h
 - Primary: 1.8m
 - ◆ Fast Tip-Tilt
 - Limited Chopping
 - ♦ Airy (in K): 0.25"

- The 'Kings' (4 Unit Tel.)
 - Fixed position!
 - Primary: 8 m
 - Adaptive Optics
 - Airy disk (in K): 0.06"

VLTI Tutorial: VLTI Concept & technical aspects, B. Koehler, 20 November 2001, Garching

Telescope Optical Design

- Intermediate Focus below M4:
 - Various artificial light sources for calibration & alignment
- Intermediate pupil image on M8:
 - Deformable mirror for MACAO
- Coude Focus:
 - ◆ Fast Tip-tilt sensor (STRAP) and later Wave Front Sensor (MACAC
 - TCCD for Field acquisition
 - Field of View at Coude: 2 arcmin. (FoV 2 arcsec in laboratory)

VLTI Tutorial: VLTI Concept & technical aspects, B. Koehler, 20 November 2001, Garching

Relay Optics

VLTI Tutorial: VLTI Concept & technical aspects, B. Koehler, 20 November 2001, Garching

Relay Optics

• 'Grasping' the UT-photons

- M9: large dichroic.
 - » Reflects IR to VLTI
 - » transmits Visible to STRAP and later MACAO Curvature sensor.
 - » Optimized for polarization.
- M10: convex spherical.
 - » Re-image telescope pupil (M2) in Tunnel center.
 - » Articulated mount to adjust lateral pupil position in Lab.
- M11: off-axis parabola.
 - » Collimates beam and send it into light duct towards M12 in DL Tunnel

The Relay Optics (M9, M10, M11) inside UT Coude room)

The Delay Lines

VLTI Tutorial: VLTI Concept & technical aspects, B. Koehler, 20 November 2001, Garching

The Delay Lines

• The 'Paranal-Express'

- Stroke: 60 m (120m in OPL)
- Resolution: <5nm
- Max. velocity: 0.5 m/s
- Stability (jitter): <14nm rms</p>
- Power dissipation: <15W

- Variable Curvature Mirror (VCM)
 - re-image pupil inside the Laboratory
 - mounted on piezo translator for fast OPD correction

The first two Delay Lines (#I & II) inside the tunnel

Transfer Optics

VLTI Tutorial: VLTI Concept & technical aspects, B. Koehler, 20 November 2001, Garching

Transfer Optics

- The beam bending 'gadgets'
 - Very high optical quality flats (λ/60 surf.)
 - Coating optimized for transmission and polarization (45° incidence)
 - Very stiff mounts and tables for immunity to μ-seismic noise
 - M12 eventually on robotic arm for automatic array reconfiguration
 - M16 on translation stages for beam switching inside lab.
 - Support future dual-feed (PRIMA)

The M12 flat folding mirror

The M16 flat folding mirror

Beam Make-up

VLTI Tutorial: VLTI Concept & technical aspects, B. Koehler, 20 November 2001, Garching

STRAP (Tip-Tilt)

- Quad-cell detector with APD at telescope Coude focus
- Pure tip-tilt correction is optimal when D/r₀<4, i.e. UT/10μm (MIDI) or AT/2 μm (VINCI,AMBER, MIDI)
- Gain on Strehl up to 5.
- Will be used on UT till MACAO is available
- Will be resident on AT

MACAO (Adaptive Optics)

- A must for UT in K-band (AMBER). Gain in coherent flux ≈ 100
- 60 elements Curvature System at telescope Coude
 - WaveFrontSensor using APD coupled with optical fibers
 - Bimorph Deformable Mirror on Tip-Tilt mount
 - vibrating membrane,
 - radial geometry micro-lenses,
- X-Y Table allows reference source different from target

VLTI Tutorial: VLTI Concept & technical aspects, B. Koehler, 20 November 2001, Garching

MACAO performance

Count/subaperture/second

FINITO (Fringe Tracker)

VLTI Tutorial: VLTI Concept & technical aspects, B. Koehler, 20 November 2001, Garching

The VLTI Laboratory

- High thermal stability; limited access, low power dissipation
- Telescope Exit Pupil re-imaged into instruments
- Optical design for up to 8 beams (4 UTs with dual feed)

Inside the Laboratory

- The Beam Switchyard
- The Beam Compressors
 - ◆ 3-mirror design (compress 80 → 18 mm)
 - High optical quality off-axis parabolas (surface error 7 rms)
- LEONARDO Reference sources
 - Laser and white-light sources
 - Light can be sent to any instrument or backwards to telescope
 - Provide reference axis for each beam and reference OPD between beams
 - Enable instrument to obtain fringes in 'autotest'
- VINCI Test Instrument
 - Used for VLTI commissioning & later as reference for performance tracking.
- Fringe Tracker FINITO
 - Co-phases (3 beams) to allow long exposures
 - ◆ mH<12 (UT)

The Switchyard & *Leonardo* reference source

The Beam Compressors (3 mirrors each)

VINCI

VLTI Tutorial

The VLTI selected critical technical aspects

VLTI Error Budget

VLTI Tutorial: VLTI Concept & technical aspects, B. Koehler, 20 November 2001, Garching

OPD variation with time (Piston errors)

- Error sources:
 - Atmosphere
 - Internal seeing
 - Vibration (wind, natural & man-made seismics, acoustics, pumps, etc.)
- Compensated (Partially) by fringe tracking.

• Top Level requirement:

Instrumental errors (internal seeing & vibrations) < atmosphere

Wavelength	0.6 µm	2.2 µm
Exposure time	10 msec	48 msec
OPL requirement (each arm) in [nm]	21	75
Telescope (UT or AT, each)	14	50
Delay Line (each)	14	50
Beam Combiner	6	21
Transfer Optics	3	10
Internal Seeing	3	10

Unequal beam intensity

- Visibility loss due to intensity mismatch:
- Error sources:
 - Atmospheric scintillation (negligible)
 - Coatings (small)
 - For fiber-fed instrument (large):
 - » Tip-tilt errors
 - » Instantaneous Strehl fluctuation

• VINCI measure I1 & I2 (photometry channels) to correct for this effect.

 $\frac{\Delta V}{V} = 1 - 2.\frac{\sqrt{I_1}.\sqrt{I_2}}{V}$

Polarization Effects

• Linear Retardation

- Error sources: Coatings
 - » Different coatings in the two arms
 - » Differential incidence angles (between arms)
 - » Differential coating characteristics (e.g. thickness of the protecting layer)
- Can be very critical in Near IR/Visible and for multi-dielectric coatings (M9).

VLTI Tutorial: VLTI Concept & technical aspects, B. Koehler, 20 November 2001, Garching

Polarization Effects

• Rotation of polarization frame

- Error sources:
 - » Differential frame-of-reference/pupil rotation due to optical design and/or misalignment
- Can be avoided by proper optical design and alignment.

VLTI Tutorial: VLTI Concept & technical aspects, B. Koehler, 20 November 2001, Garching

VLTI Tutorial

Some results from on-going VLTI commissioning

Measured micro-seismic vibration

• OPD as measured with accelerometers at the back of Transfer Optics mirrors (*M12*, *M16*, *Switchyard*, *Beam Compressor*)

VLTI Tutorial: VLTI Concept & technical aspects, B. Koehler, 20 November 2001, Garching

OPD stability inside UT

- Measured with high sensitive accelerometers on UT#1&3
- Few improvements on sub-system identified and on-going
- Overall stability excellent

VLTI Tutorial: VLTI Concept & technical aspects, B. Koehler, 20 November 2001, Garching

Measured OPD spectrum

Measured Internal seeing (tip-tilt)

VLTI Tutorial: VLTI Concept & technical aspects, B. Koehler, 20 November 2001, Garching

Measured Image Quality

First UT Light in VINCI

(Note: the light reaches VINCI after 25 reflections and 200m travel)

• Image Quality from UT Nasmyth laser beacon to VINCI CCD:

FWHM < 0.040" (limited by pixel size)

Conclusion

- Specific and stringent error contributions need to be taken into account for an Interferometer:
 - OPD stability (vibrations from equipment, wind buffeting, micro-seismic noise, residual atmospheric piston,...)
 - Polarisation (optical layout, coatings)
 - Image Quality (mirror figuring, alignment, internal seeing,...)
- The two major technical risks have been:
 - OPD stability within the UT
 - The internal seeing
- Both proved to be according (or very close) to the required performance
- Ready for the **next step**: PRIMA + ...