Superheterodyne Laser Metrology for the Very Large Telescope Interferometer (VLTI)

Y. Salvadé, R. Dändliker

Institute of Microtechnology, University of Neuchâtel, Switzerland

S. Lévêque

European Southern Observatory, Garching bei München, Germany

Table of contents

- Short description of VLTI-PRIMA
- Metrology requirements
- Superheterodyne metrology
- > Phase-meter prototype
- > Test of accuracy
- > Foreseen tests at the VLT observatory
- Conclusions

Very Large Telescope Interferometer (VLTI)

- Four 8-m Unit Telescopes (UT)
- Three moveable 1.8-m Auxiliary Telescopes (AT)

The VLT Array on the Paranal Mountain ESO PE Photo 14440 (24 May 2000) Elfungua Southern Oberrato

IMT, University of Neuchâtel

European Southern Observatory

Phase-referenced imaging and µas astrometry (PRIMA)

➤ Goals

- Observation and imaging of faint objects
- □ Micro-arcsecond astrometry

> Principle

- Bright star as reference star (fringe tracking)
- Laser metrology for controlling internal optical path lengths
- Angular separation of the two objects:

•
$$OPD_R - OPD_S = \Delta S B + \Delta L$$

PRIMA metrology - requirements

Range a d a c ura y		
Maxpropaagion p(arethan way)	550m	
In d iid u a $1PDL_1$, L_2 (return wa y)	240m	
Differen t il OPD, ΔL (1 arcm i)n	60 m m	
Accuracy oAL (µasaccuracy)	< 5 n m	
Resolution oth	<1 n m	

Expected dynamic phase variations ($\lambda = 1 \mu$ m)		
on indi vidua lOPD	Typich vhue	
Trac k i nogf DL & STS ($\partial L/\partial t = 11 \text{ m m/s}$)	22 k H z	
Variable cwature mirror	abotu4 kzH	
on differ enti a DPD		
Trac k i nogf DDL & STS $(\partial \Delta L / \partial t)$	20 H z	
Sl ewi n gof DDL & STS $(\partial \Delta L / \partial t)$	30 k H z	

PRIMA metrology - additional requirements

> Laser source

- $\Box \quad \text{Coherence length:} > 500 \text{ m}$
- □ Frequency stability: $< 10^{-8}$ (same laser is used for both interferometers)
- □ Wavelength between 1.1 µm (bandgap of Si) and 1.45 µm (H band), to avoid straylight on existing stellar detectors
- Frequency stabilized Nd:YAG laser @ 1.319 μm (to be developed)

> Phase detection technique

- □ High-resolution technique ($2\pi/660$ phase resolution)
- Suppression of crosstalks between reference and science channels (Calibration mode: Star separator inject the same star in both channels)
- → Two heterodyne interferometers:
 - \blacktriangleright Different heterodyne frequencies f_1 and f_2
 - Frequency offset Δv between the two interferometers

Heterodyne interferometers

Superheterodyne detection

> Electronic mixing + low-pass filtering

$$I_{mes}(t) = I_{12} \cos \left[2\pi (f_1 - f_2)t + \phi_1 - \phi_2 \right]$$

- > Advantages
 - $\Box \quad \text{Direct access to } \Delta L$
 - $\Box Slower phase variations$ $\rightarrow enable longer integration times$
 - □ Phase noise less important

Frequency shifters

> Fiber pigtailed acousto-optic modulators (IntraAction Corp.)

 \Box Heterodyne frequencies: $f_1 = 650 \text{ kHz}$ and $f_2 = 450 \text{ kHz}$

 $\Box \quad Frequency \text{ offset: } \Delta v = 78 \text{ MHz}$

Electronic prototype

> VME boards

- □ Low-noise photodetectors + preamplifiers
 - Sensitivity of 0.9 $V/\mu W$
 - NEP of 0.2 pW/Hz^{0.5}
 - Required optical power: 10 nW
- □ Superheterodyne modules
- □ Limiting amplifiers
- Digital phase-meter
 - Zero-crossing phasemeter
 - On board averaging capability

Superheterodyne modules

Digital phasemeter

> Digital zero-crossing

- **\Box** FPGAs (Altera) to measure the « instantaneous » phase and the number of 2π cycles
- □ On-board averaging (Average over 2ⁿ periods)
- □ PLL to generate a clock frequency of 200 MHz

IMT, University of Neuchâtel

- □ Interference signals:
- Reduced sensitivity:

$$\begin{split} I(t) &= a_1 cos(2\pi f_1 t + \phi_1) + a_2 cos(2\pi f_2 t + \phi_2) \\ \phi_1 - \phi_2 &= 4\pi (\nu_2 - \nu_1) L/c \end{split}$$

Results

- > Two-wavelength interferometry
 - \Box $v_2 v_1 = 1.5 \text{ GHz} \rightarrow \Lambda = 200 \text{ mm}$

m (stability of 10^{-5})

- \Box Required mechanical stability > 100 µm
- □ Measured accuracy:
 - Standard deviation of 2p/300
 - Corresponding to 2.3 nm accuracy
- □ Bandwidth: 50 kHz
- □ Optical power: 100 nW
- Improvement by averaging over several periods

PRIMA metrology - Test Campain at Paranal- Q1 2002

- Main Objectives
 - **Quantify the influence of environmental parameters (OPD and Tilt Disturbance)**
 - **Quantify the influence of the VLTI optical train (transmission, polarization)**
 - Determine straylight levels
 - □ Retro-fit results to the Design of the PRIMA metrology system.
- > Infrastructure
 - VLTI Instrument "VINCI" for injection in the stellar path
 - □ full VLTI optical train up to Retro-reflectors mounted on 2 UT 's (optical path ≈ 350m)

Picture of VINCI Instrument (Courtesy of P. Kervella)

Conclusion

Concept based on superheterodyne detection for PRIMA

> Electronic prototype:

- □ Manufacture and preliminary tests
- □ Accuracy better than 5 nm for optical power of 100 nW and 50 kHz bandwidth
 - Good hopes to improve this performance
- □ Suitable for two-wavelength interferometry (absolute distance measurement)
- > Next step: full scale tests at the VLTI
 - □ Retro-fit results to the Design of the PRIMA metrology system.

