

2009 INTERNATIONAL IMAGE SENSOR WORKSHOP

June 26-28, 2009 Bergen, Norway

Mark Downing, O. Iwert.

ODT/ Instrumentation division ESO

Agenda:

- None
- Just report on some of the interesting developments in detectors

- Find out about the latest trends in CMOS imagers.
- Get answers to the question: <u>Are we crazy</u>?
 - Can a 1680x1680 24 pixels CMOS imager be developed with
 < 3e RON at 700fps.
- Assess "state of the art" performance w.r.t.
 - RON, dark current, image lag, read speed, RTS noise.
- Make new contacts and discover new potential suppliers.

A large number of companies are now doing Backside Illuminated CMOS

Improved colour separation for a backside illuminated image sensor with 1.4 μm pixel pitch

Jens Prima^(*,l), Francois Roy^(l), Hugues Leininger^(l), Christophe Cowache^(l), Jerome Vaillant^(l), Luc Pinzelli^(l),

Daniel Benoit^(l), Norbert Moussy⁽²⁾, Benoit Giffard⁽²⁾

(1) FTM Imaging, STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles, France

A Manufacturable Back-Side Illumination Technology using Bulk-Si Substrate for Advanced CMOS Image Sensor

S.G. Wuu¹, C.C. Wang, D.N. Yaung¹, Y.L. Tu¹, J.C. Liu¹, T.H. Hsu¹, F.J. Shiu¹, C.Y. Yu¹, G.Y. Shiau¹, R.J. Lin, C.S.Tsai¹, L. Tran¹, SSChen¹, CCWang¹, SYHuang¹, H. Rhodes², D. Tai², Y. Qian², D. Mao², S. Manabe², A. Shah², R. Yang², J.C. Hsieh³, Calvin Chang³, C.W. Lu³, Shawn Tseng³

¹Taiwan Semiconductor Manufacturing Company, Hsin-Chu, Taiwan, R.O.C. ²OmniVision Technologies, Inc., 4275 Burton Drive, Santa Clara, CA 95054

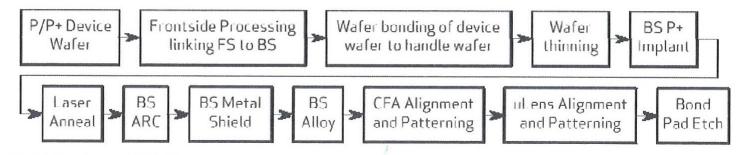
A 1.4 μm Pixel Backside Illuminated CMOS Image Sensor with 300 mm Wafer Based on 65 nm Logic Technology

Y.Kohyama, H.Yamashita, S.Uya, T.Yoshida, N.Sakurai, I.Inoue, T.Yamaguchi, K.Nagata, *H.Harakawa, *A.Murakoshi, *T.Harada, *M.Takahashi, *M.Morita, *K.Tanida, *M.Dohi, *K.Takahashi, *K.Iwade, *T.Matsumura, *H.Sugiyama, H.Goto and K.Tomioka

Imaging Device Marketing & Engineering Dept., System LSI Division, Toshiba Corporation Semiconductor Company

Monolithic and Fully-Hybrid Backside Illuminated CMOS Imagers for Smart Sensing

Padmakumar R. Rao, Kyriaki Minoglou, Koen De Munck, Deniz Sabuncuoglu Tezcan, Chris Van Hoof and Piet De Moor


IMEC, Kapeldreef 75, B-3001 Leuven, Belgium Email: ramach@imec.be, Ph: +32 16 281245

The Mass Production of BSI CMOS Image Sensors

BSI Process

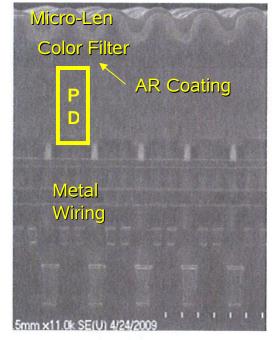


Figure 1. 1.4µm pixel cross-section

- Collaborate closely with TSMC
- Thin -> P+ implant then laser anneal
- See Olaf's talk

Table 1. 1.4µm and 1.75µm pixel performance

Parameter	1.4 µm	1.75 µm
FWC	4500 e	6500e
Peak QE - R	43.8%	53.0%
Peak QE - Gb	53.5%	60.1%
Peak QE - Gr	53.6%	60.2%
Peak QE - B	51.6%	60.4%
R/B	5.70%	4.8%
G/B	14.40%	11.4%
R/G	11.20%	9.2%

Parameter	1.4 µm	1.75 µm	
B/G	31.80%	24.0%	
G/R	35.20%	28.9%	
B/R	7.30%	5.4%	
Sensitivity (530nm)	671 mV/Lux-sec	1500 mV/lux-sec	
Read Noise (pixel/periph)	1.9/1.3 e	2.1e/1.3e	
PRNU	0.75%	0.8%	
Lux for 10:1 SNR	110 Lux	60 Lux	
Dark Current (50 C)	27 e/sec	22 e-/s	

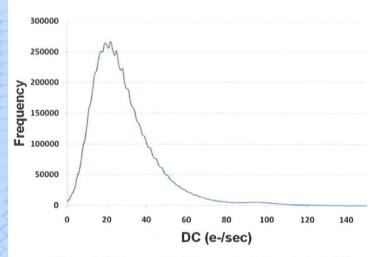


Figure 8. Dark current histogram for 1.4µm pixel at 50°C

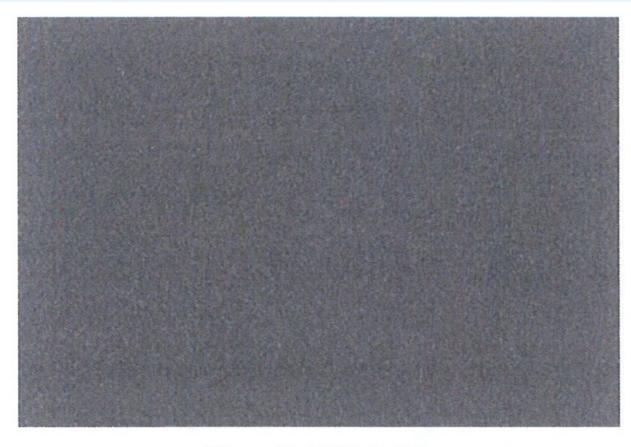


Figure 7. RAW dark image

High Speed Imagers

Limitations to the frame rate of high speed image sensors

ESO

European Organisation for Astronomical Research in the Southern Hemisphere

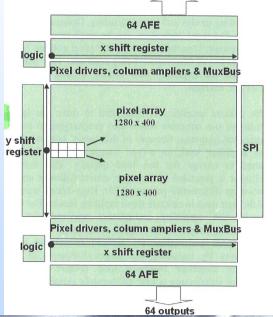
G. Meynants, G. Lepage, J. Bogaerts, G. Vanhorebeek, X. Wang

The introduction of CMOS image sensor technology has accelerated the development of high frame rate image sensors, which are used in broadcast, sports and research applications, and in motion and impact analysis. The CIS architecture allows exchanging resolution for frame rate. Small

image sensors require higher frame rates that require further optimization. Typically larger pixel sizes are used for reasons of light sensitivity, which allows implementing several tricks to increase frame rate. Most of them consist in either reducing the capacitance of a column, introducing more parallelism or implementing buffering or repeaters.

Progress in 1.25-inch Digital-Output CMOS Image Sensor Developments for UDTV Application

I. Takayanagi, S. Osawa, T. Bales, K. Kawamura, N. Yoshimura, K. Kimura, H. Sugihara, E. Pages, A. Andersson, S. Matsuo, T. Oyama, M. Haque, H. Honda, T. Kawaguchi, M. Shoda, B. Almond¹, P. Pahr², S. Desumvila¹, D. Wilcox¹, Y. Mo³, J. Gleason³, T. Chow³, J. Nakamura. Aptina Japan, LLC.; ¹ Aptina UK, Ltd.; ² Aptina Norway, AS.; ³Aptina LLC, USA


A 2.5 inch, 33Mpixel, 60 fps CMOS Image Sensor for UHDTV Application

Steven Huang, Takayuki Yamashita¹, Yibing Wang, Kai Ling Ong, Kohji Mitani¹, Ryohei Funatsu¹, Hiroshi Shimamoto¹, Lin Ping Ang, Loc Truong, Barmak Mansoorian. Forza Silicon Corporation, USA; ¹NHK Science and Technical Laboratories

A High Speed Pipelined Snapshot CMOS image sensor with 6.4 Gpixel/s data rate

+	ESO
+ES+ 0 +	European Organisation for Astronomical Research in the Southern Hemisphere

Parameter	Value	Remark
Pixel size	$20 \times 20 \mu \text{m}^2$	
Pixel array	1280 x 800	
Pixel type	6T	Pipelined, snapshot shutter
Interface	Analog Out	1.3 V swing
Frame Rate	6242 fps	For full frame readout
Data Rate	65 MSamples /s	129 outputs
Main power supply	3.3 V	128 outputs
Power consumption	2.5 W	
Fill Factor	58 %	
Full well	38 ke ⁻	
Read noise	28 e ⁻	In the dark
Responsivity	$13100 \text{ V/s/(W/m}^2)$	@ 550 nm
Conversion gain	32 uV/e-	@ the sensor output
DR	62.6 dB	Intra-scene
MTF	> 60%	@ Nyquist frequency
FPN	2.9 %	rms of full output swing
RNU	3.1 %	rms of signal level
Dark Signal	85 mV/s	@ room temperature
Chip size	29 x 25.5 mm ²	
Maximum output load	10 pF	
Package	314 pins PGA	With built-in Peltier cooler

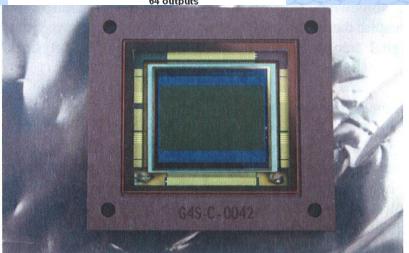
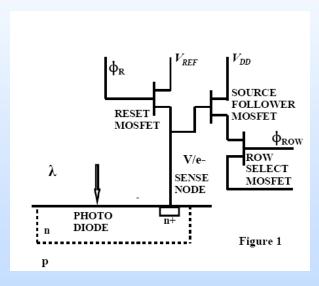
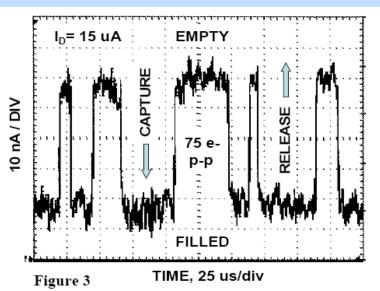
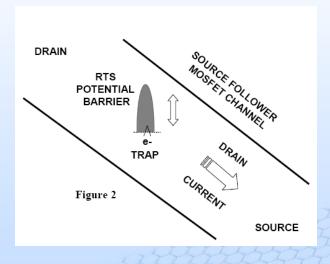
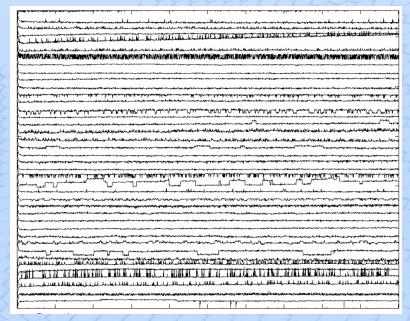


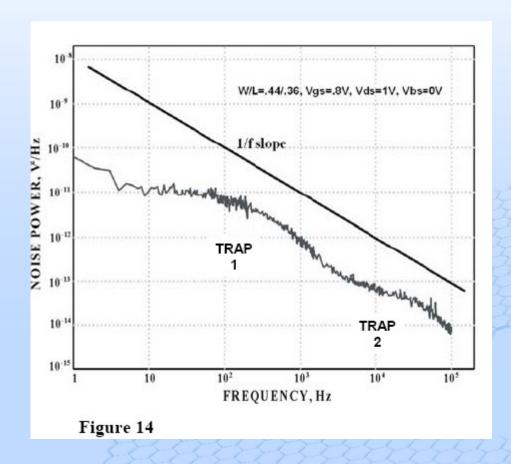
Figure 4: 314 pins PGA package with built-in peltier


Numerous novel techniques to improve RON.


 Common comment is that it is only a matter of time before sub-electron RON will be possible


23 July 2009 IIW2009 - Bergen 10


Random Telegraph Signal Noise



Random Telegraph Signal Noise

Random Telegraph Signal Noise

13

Characterization of In-Pixel Buried-Channel Source Follower with Optimized Row Selector in CMOS Image Sensors

Yue Chen, Xinyang Wang, Adri J. Mierop and Albert J.P. Theuwissen

Electronic Instrumentation Lab., Delft University of Technology,

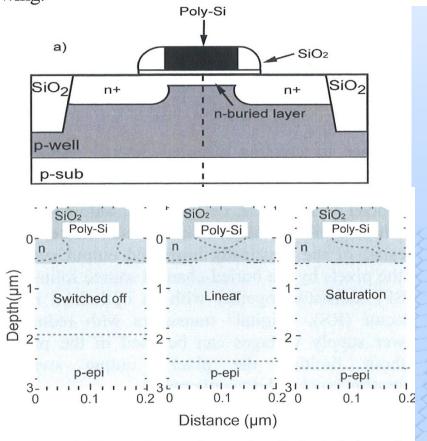
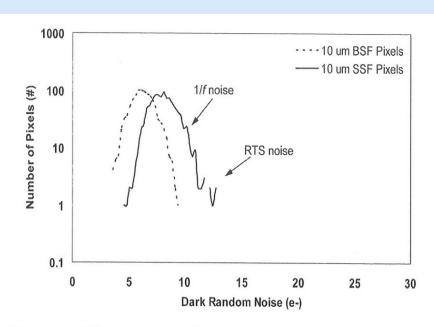
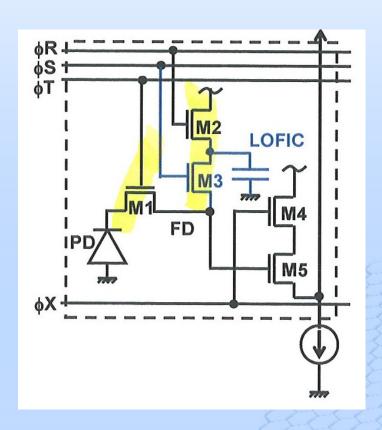
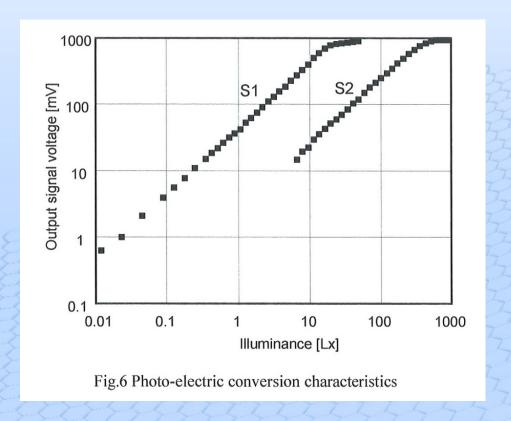


Figure 2. Expected operation modes of a buried-channel nMOS transistor




Figure 6. Histograms of the dark random noise for BSF and SSF pixels


A 200-μV/e⁻ CMOS Image Sensor With 100-ke⁻ Full Well Capacity

ESO

European Organisation for Astronomical Research in the Southern Hemisphere

Satoru Adachi, *Member, IEEE*, Woonghee Lee, Nana Akahane, Hiromichi Oshikubo, Koichi Mizobuchi, *Member, IEEE*, and Shigetoshi Sugawa, *Member, IEEE*

A 200-μV/e⁻ CMOS Image Sensor With 100-ke⁻ Full Well Capacity

ESO

European Organisation for Astronomical Research in the Southern Hemisphere

Satoru Adachi, *Member, IEEE*, Woonghee Lee, Nana Akahane, Hiromichi Oshikubo, Koichi Mizobuchi, *Member, IEEE*, and Shigetoshi Sugawa, *Member, IEEE*

Effective number of pixels	800 × 600	
Pixel pitch	4.5 μm	
Process technology	0.18μm 2P3M CMOS	0.18μ
Operation voltage	5 V	
Frame rate	60 fps	
Differential amplifier gain	x1, 2, 4, 8	
Temporal noise (Gain=x2)	0.19 mVrms	C
	(2.3 e ⁻ rms)	(
Saturation of S1 (Gain=x2)	770 mV	
Saturation of S2(Gain=x1)	750 mV	
Full well capacity	154 Ke-	
Dynamic range	96.5 dB	

Synchronous and Asynchronous Detection of Ultra-Low Light Levels

Christian Lotto^{1,3}, Peter Seitz^{2,3}. ¹CSEM SA, Photonics Division, Switzerland; ²CSEM SA, Nanomedicine Division, Switzerland; ³EPFL STI IMT-NE, Federal Inst. of Technology, Switzerland

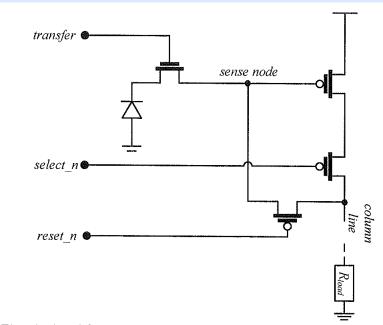


Fig. 4: Amplifying 4-Transistor-Pixel for Ultra-Low-Noise CMOS Image Sensor

We propose a novel synchronous CMOS image sensor pixel with an in-pixel voltage amplifier (see figure 4) [4]. Due to amplification, the impact of electronic noise from downstream circuits is effectively reduced to a high degree. The remaining readout noise is dominated by the pixel amplifier's performance.

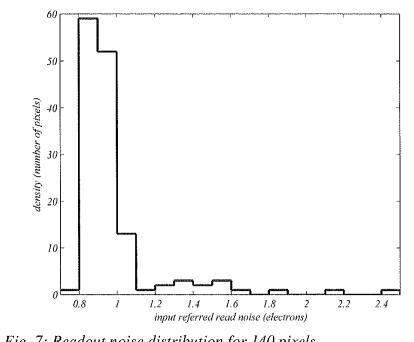
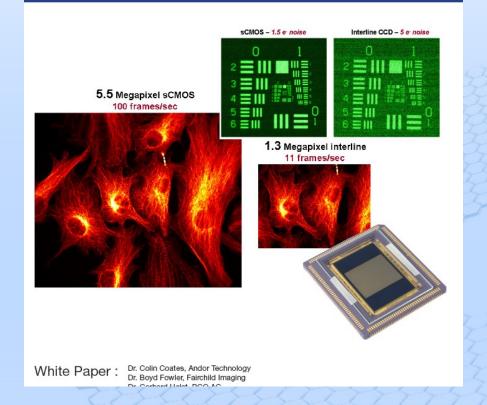


Fig. 7: Readout noise distribution for 140 pixels.

23 July 2009 IIW2009 - Bergen 16



sCMOSScientific CMOS Technology

A High-Performance Imaging Breakthrough

Wide Dynamic Range Low Light Level CMOS Image Sensor

ESO European Organisation for Astronomical Research in the Southern Hemisphere

Fairchild ımagıng

Boyd Fowler, Chiao Liu, Steve Mims, Janusz Balicki, Wang Li, Hung Do, and Paul Vu

Fairchild Imaging, Inc., 1801 McCarthy Blvd., Milpitas, California, USA

Parameters	High gain channel	Low gain channel
Conversion gain (DN/e-)	2.1	0.065
Read noise (e- RMS)	0.80 (median)	7.2 (median)
	1.15 (mean)	7.0 (mean)
	1.10 (std)	1.5 (std)
Dark Current (e-/pixel/sec) @ 20C	9	9
Full well capacity (e-)	1.4K	42K
Linearity (% RMS)	1.3	0.15
Dynamic range	1750 (median)	5800 (median)
Max pixel clock (MHz)	287	287
Gain FPN (DN/e-RMS)	0.084	3.9e-5
DSNU (e-/pixel/sec RMS) @ 20C	3.5	3.5
Offset FPN (e- RMS)	13	210

The sensor has a 22-bit digital output port operating at up to 287 MHz. The digital data at the column is transferred to the output pins using a two level 320:1 digital multiplexer. Note that each pixel is simultaneously readout twice, once through a high gain amplifier and once through a low gain amplifier. Both the high gain amplifier and the low gain amplifier outputs are digitized to 11 bits. The maximum frame rate of

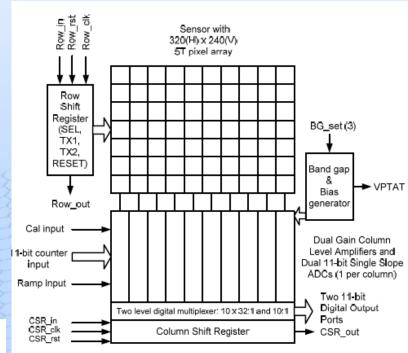


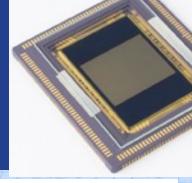
Figure 1. Sensor Block Diagram

sCMOS

Performance highlights of the first sCMOS technology sensor include:

Sensor format 5.5 megapixels 2560 (h) x 2160 (v)

Read noise < 2 e⁻ rms @ 30 frames/s; < 3 e⁻ rms @ 100 frames/s


Maximum frame rate 100 frames/s

Pixel size 6.5 µm

Dynamic range 16,000:1 @ 30 frames/sec

QE_{max} 60%

Read out modes (User selectable) Rolling and Global Shutter

	70%]							
	60%			_				-
ency	50%	_/			1			-
Quantum Efficiency	40%	/						-
ntrim	30%							\dashv
Qual	20%							-
	10%							
	0% 40	0 500	8	00	700	800	900	1000
	40			avelength /		000	000	.000
	Figure	1: QE curve between 400 -	- 1000nm of front-illun	ninated (microlens) sC	MOS sensor. Note that b	oth green and red/NIR re	esponse is well enhanced.	

Array Size (H x V)	Rolling Shutter mode (frames per second)
2560 x 2160 (full frame)	105
2048 x 2048 (4 megapixel)	110
1300 x 1024 (1.3 megapixel)	220
512 x 512	440
256 x 256	880
128 x 128	1760

Looking at possibility to get loan and purchase a camera from Andor

CCD Advances

High Speed Impactron CCD Line Sensor with Color Sensing Capability

Izumi Kobayashi ¹, Jaroslav Hynecek ²

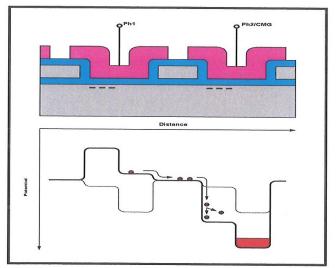


Fig.1. Charge multiplication concept.

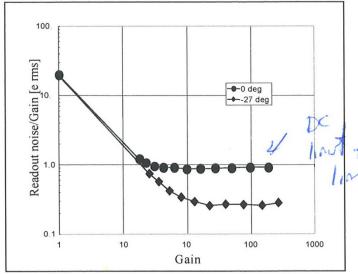


Fig.5. Readout noise as function of Gain

Table T1: Summary of the device performance parameters:

<u>ITEM</u>	TARGET	<u>ACTUAL</u>
Pixel Size	10x10um	\leftarrow
Active Pixel Number	3600x2 pixel	\leftarrow
OB Pixel Number	20 pixel	\leftarrow
Dummy Number	6 pixel	\leftarrow
Output Terminal	4-ch	
PD Cell Well Capacity	$50\text{ke-} \sim 80\text{ke-}$	74ke-
Serial/CMG Well Capacity	$50\text{ke-} \sim 80\text{ke-}$	74ke-
FD Well Capacity	80ke- ~ 110 ke-	98ke-
Line Rate	$10kHz \sim 15kHz$	13kHz
Serial Transfer Frequency	$46 MHz \sim 80 MHz$	60MHz
CMG Register Frequency	$23MHz \sim 40MHz$	30MHz
CMG Gain	$500x \sim 1000x$	←
Amp. Conversion gain	$12uV/e \sim 14uV/e$	13.2uV/e
Amp. Noise floor	1e	<1e

- Meet Jerry; the concept man behind EMCCD and Texas Instrument Impactron technology.
- No over-illumination problem as pixels have anti-blooming and only modest gains of 10-20 are required.

Low Noise High Speed Amplifier

22

A 2/3-inch Low Noise HDTV FT CCD-Imager for 1080i180, 1080p90 and 720p120 Scanning at Constant Image Diagonal

Peter Centen¹, Holger Stoldt², Jan Visser³, Jan T. Bosiers²

reaches a pixel rate of 223Mpixel/sec. The on-chip amplifier has a bandwidth >241MHz. At 112MHz it has a Noise Electron Density of NED=0.59 e2/MHz and after CDS, 8 electrons in 30MHz bandwidth.

The classical parameters for noise optimization of the on-chip amplifier are the Width, the Length and the Bias current of the source follower in the detection node [10,11]. Noise optimization stops at the statement to make the channel length as small as possible. An additional degree of freedom for further optimization is found when the oxide thicknesses of the MOS transistors in the on-chip

In **Figure 5** the state-of-the-art amplifier noise performance is given using reference to the reset frequency [8]. Noise levels in the range of 4.6 to 2 electrons are reported [2,13,14] but only for CMOS imagers and only at a high gain setting of the column amplifiers, reducing saturation level at the same time, or with 4 channel readout [14]. In the past sub-electron noise levels where reported for CCDs but always for bandwidths less than 1MHz.

Type	Ref	Reset	Ampl. Type	Conversion gain	Noise after CDS/
		Frequency			√Resetfrequency
FF-CCD	ED1997 Burke	100 kHz	Source Follower	20 μV/e	6.3 e/√MHz
CMOS	AIS2003 Krymski	50 kHz	Source Follower +Gain	60 μV/e	6.3 e/√MHz
FF-CCD	AIS2005 Draijer	25 MHz	Source Follower	40 μV/e	2.8 e/√MHz
CMOS	ISSCC2005 Kozlowski	104 kHz	Source Follower +Gain	?µV/e	46 e/√MHz
CMOS	ISSCC2006 Yoshihara	156 kHz	Source Follower +Gain	40 μV/e	17.7 e/√MHz
CMOS	ISSCC2007 Takahashi	156 kHz	Source Follower +Gain	75 μV/e	11.6 e/√MHz
CMOS	ISSCC2007 Cho	625 kHz	Source Follower +Gain	101 μV/e	10.4 e/√MHz
FT-CCD	This paper	111MHz	Source Follower	18 μV/e	1.3 e/√MHz

Figure 5: State-of-the-art amplifier noise performance

Other Applications

IR Detector

Ge

SiO₂

A Monolithic Ge-on-Si CMOS Imager for Short Wave Infrared

B. Ackland, C. Rafferty, C. King, I. Aberg, J. O'Neill, T. Sriram, A. Lattes, C. Godek and S. Pappas.

NoblePeak Vision

500 Edgewater Dr., Ste 570, Wakefield MA 01880. USA. Ph: +1(781) 224-9740 email: bdackland@noblepeak.com

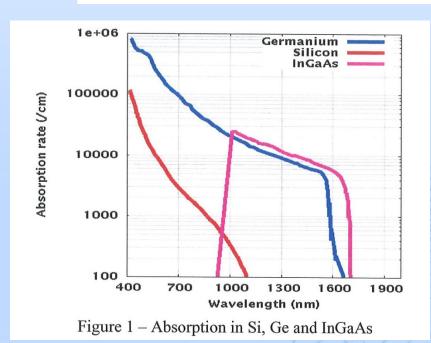


Figure 2 – Germanium selective growth

Si substrate

IR Detector

A Monolithic Ge-on-Si CMOS Imager for Short Wave Infrared

B. Ackland, C. Rafferty, C. King, I. Aberg, J. O'Neill, T. Sriram, A. Lattes, C. Godek and S. Pappas.

NoblePeak Vision

500 Edgewater Dr., Ste 570, Wakefield MA 01880. USA. Ph: +1(781) 224-9740 email: bdackland@noblepeak.com

Detectors of size from 2 μm to 5.6 μm and imaging arrays with pixels of size 7 μm and 10 μm have been fabricated in this technology.



Figure 3 – Germanium diode embedded in CMOS

Smallest Sensors (endoscopes)

400x400 pixel image sensor for endoscopy in 1.7mm² CSP package

Bram Wolfs (1), Cedric Esquenet (2), Walter Iandolo (3)

2.8um pixels implemented using TSMC 0.18um CIS technology to achieve 400x400 resolution in a 1.78x1.78mm Chip Scale Package (CSP). A hybrid (analog/digital) fully differential I/O (patents pending) is capable of driving cables up to 5m long while keeping the total power consumption below 80mW.

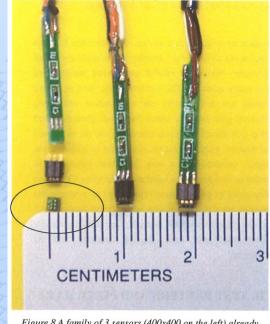
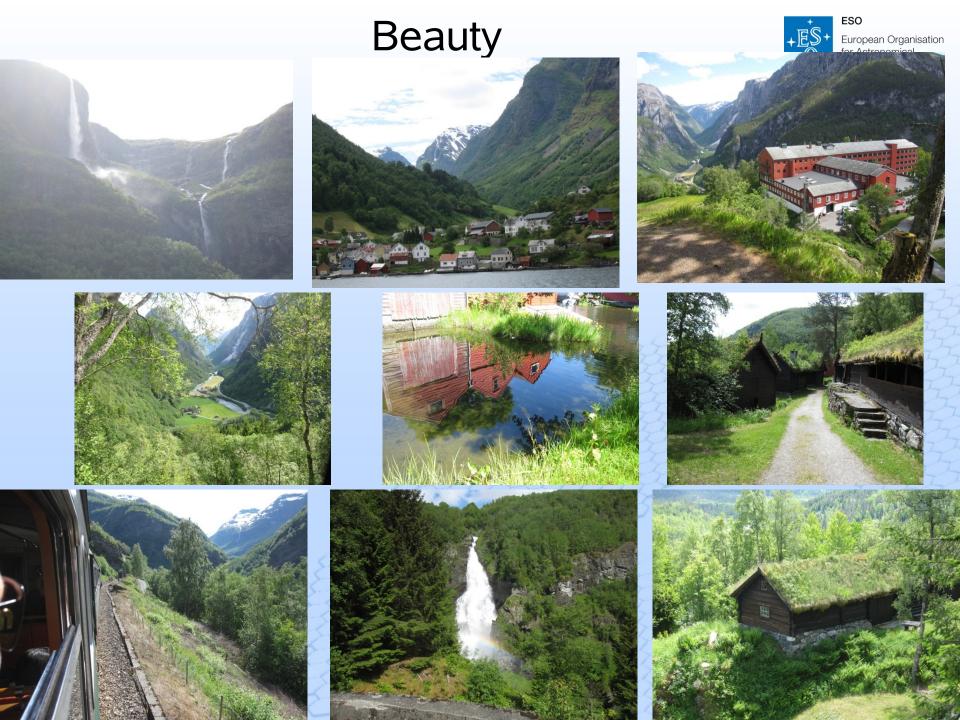
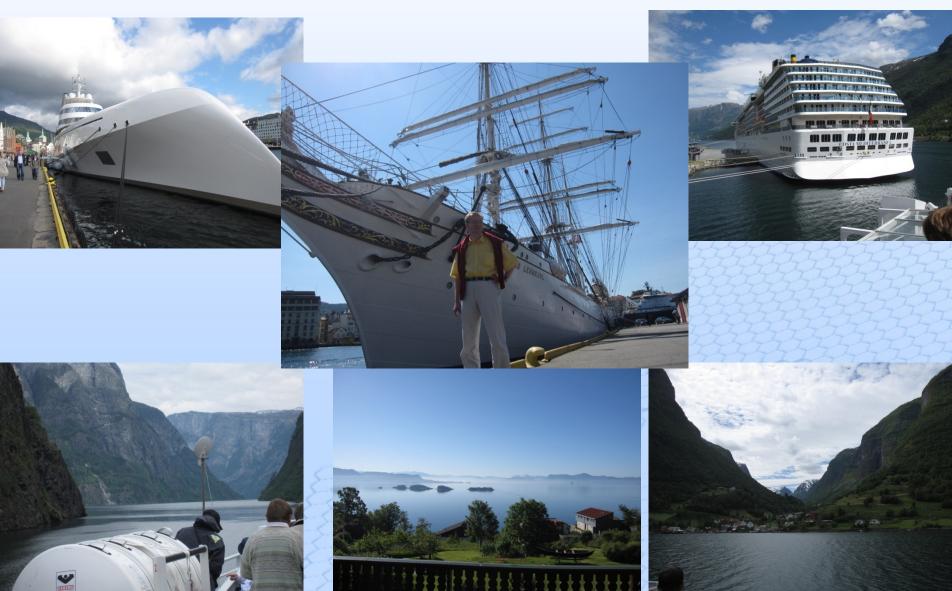




Figure 8 A family of 3 sensors (400x400 on the left) already connected to the tips of endoscopes[1]

Fjords and Boats

Art

Food

New Friends

RTS

noise [2]. Research has revealed that the dominated random noise sources in CMOS image sensors (CIS) are due to the lattice defects at Si-SiO₂ interface of the in-pixel source follower (SF) transistor [3, 4]. As CMOS processes scale down, the gate area of the transistors becomes so small that it easily happens to have only one active interface trap underneath the transistor's gate, which will induce the RTS noise. Because of this single electron trapping and de-trapping during the transistor operation, the RTS appears in pixels which have only one active interface defect and dominates the pixel temporal noise, which limits the imaging quality under low-light conditions [5]. Therefore, as long as a perfect clean gate interface can not be guaranteed, the 1/f or RTS noise will stay dominant in the random noise in pixels.

Fig.2 shows the pixel schematic and the operation diagram. The pixel schematic consists of a fully depleted photodiode (PD), a floating diffusion to convert the charge to the voltage (FD), a charge transfer switch (M1), an lateral over-flow integration capacitor (LOFIC), a switch between the FD and the LOFIC (M3), a reset switch (M2), a pixel source follower (M4) and a pixel select switch (M5). The basic concept in this pixel circuit is to use the switch M1 for a suitable overflow path of saturated photoelectrons and integrate overflowed photoelectrons in the FD and the LOFIC during a charge integration period.