
Report on NGTCCD Workshop mission
San Diego - 9-12 Aug 2005

From: P. Duhoux
To: M. Cullum
Cc: P.Sinclaire, M.Riquelme, R.Reiss, K.Wirenstrand

1 – Purpose of the mission
The mission was aimed to learn about internals of the PMC and TIM boards’
embedded DSP software, understand the timings and exercise the interrupts.
This workshop was taking place at ARC’s premises in San Diego, USA. Dr. R. Leach
was my principal contact.

2 – Test system description

2.1 - Hardware
The NGTCCD systems comprise 3 main parts:

• PMC board ARC-65 installed on the PMC Slot of a MVME2700 CPU board.
• ARC Controller
• Linux Laptop APR2004 – VxWorks 5.4

In addition
• a power supply 24V 3A for the controller
• a Fiber Optics (FO) pair connection between the PMC to the controller
• a Point-to-Point Ethernet connection between the Laptop and the CPU.

The PCI pin INTA* and the FO XMIT* and RECV Strobe signals were used for timing
measurements on a logic analyzer.

2.2 - Software
The Linux Laptop has been installed with the VLT Common Software Release
APR2004 + patches. The necessary environments were created that allow the CPU to
boot from the Linux machine.
The VxWorks device driver arcdrv latest version 1.14 was used and modified.
This module hosts also the PMC and Controller embedded DSP code.

3 – Activity report and tests

3.1 – PMC code architecture
The PMC code is implemented as an endless loop on FO receive. Host
communication via PCI generates an interrupt that allows to process host commands.
Commands are processed locally or forwarded to the TIM board depending on the
destination flag. During the readout, any TIM command must be avoided since the FO
link is then busy with data transfer.
Even though this code remains very complex as it uses specific features provided by
the DSP 56301 processor for DMA and PCI interface, its structure is now better
understood and code extensions can be considered.

3.2 – Interrupts
On ESO’s request 2 distinct interrupt sources have been implemented (controlled by
the primitives IMAGE_IRQ and REPLY_IRQ). In addition to the DMA transfer
completion interrupt, a reply ready interrupt is now supported.
Since only one interrupt line (PCI signal INTA*) can be asserted by the PMC, a
dedicated flag (INTA_SRC) has been introduced that contains the code of the
interrupter (1 for command, 2 for DMA). A new vector command
READ_INTA_SOURCE (code 0x8B) has been implemented that returns the content of
the storage location INTA_SRC.

On the driver side, the interrupt INTA* must be disabled and cleared prior to
configuration and enabling. Both interrupt vector and level take the value 0x19 = 25.
The Interrupt Service Routine (ISR) arcdrvISR() must retrieve the interrupt source
and clear the interrupt before giving the semaphore arcdrvIntSem to the interrupt
task tintARC for DMA interrupts; for CMD interrupts, the ISR gives the semaphore
arcdrvCmdSem directly to the driver function arcdrvCommand() pending on it.
The interrupt task tintARC is an endless loop waiting on the semaphore
arcdrvIntSem and invoking a user-function whenever available.

Only the DMA completion interrupts have been tested so far.

Tests have shown that most of the commands do not need delay waiting for the reply:
solely the commands PON, POF, CLR, SBV and SGN need a significant delay as the
associated operation involves HW settings on the Controller. But these commands are
part of the system initialization and thus do not jeopardize the run-time performances.
For the commands expecting data from the controller a short delay of 100 to 200 µs is
necessary until data is available in the DSP output FIFO.

command Delay
[ms]

PON <500
POF 0.6
CLR 1 1.8
CLR 3 6.0
SBV 4.2
SGN 0.6

Linear approximation of the execution time of the command CLR (Wipe):

CLR n : 2.67 × n – 1.25 ms (for the chip CCD57-10).

3.3 – PMC code possible enhancements

The DSP 56301 is a very fancy and powerful processor running at 100MHz (10ns /
instruction). In addition to its on-chip memory 3 banks of external memory (8MB in
total) can be addressed.

 3.3.1 – Image data unscrambling
 The image data is copied into the CPU DRAM via DMA. The PMC is DMA
controller. Hence the CPU is not affected by the transfer, only the PCI bus is active.
As a consequence of the readout sequence, the pixel data is copied as readout in to the
CPU DRAM: that means that the image data coming from output Right is mirrored
and interlaced with data coming from output Left. So far the CPU takes care of re-
ordering the pixel data as a function of the setup. This pixel manipulation however is
not optimal for the CPU as it must handle 16bits integers. A more elegant and
performing solution would consist in migrating this operation onto the DSP. As
illustrated in section 3.5 the data transfer via the FO from the Controller to the PMC
takes place at a speed of 1 pixel / µs into the receiving FIFO. In addition a time gap of
at least 5µs is preserved between 2 lines. Hence it shall be possible to redesign the
data transfer so as to hook an interrupt on FIFO Half-Full, copy the 512 bytes of the
FIFO into a double DRAM buffer, re-organize the pixels in the data buffer and send
the data via DMA to the host DRAM without affecting significantly the data transfer
time.

FIFO Half-Full Interrupt Service Routine
 append FIFO data to DRAM Buffer #b
 if (DRAM Buffer #b full) then
 set data available #b

swap buffer
 endif

Data Transfer activity
 allocate 2 DRAM buffers of N lines each
 do

while (!data available #b) wait
 re-organize pixels in DRAM buffer #b
 initiate DMA transfer
 while (!all pixels sent)

This re-design would also permit to physically split the window buffers and transfer
them into 2 different image buffers on the CPU.

 3.3.2 – Image processing

 Using a similar construction, it shall be possible to perform part or whole of
the image processing for guiding purpose (may be restricted to windowed readout
only and limited to a maximum window size).

3.4 – Multiple window readout

The implementation of this feature has been discussed on Friday morning and requires
a partial redesign of the TIM board embedded DSP code in order to support vertically
connected windows (not overlapping). A rough analysis shows that any window
combination can be mapped as a sequence of 1+3w+1 integers:
 n [si wi ri]1..w sr
where
 w number of windows
 n number of rows for this entry line applicable
 si number of pixels to skip before window #i
 wi window index for data
 ri number of pixels to read for window #i

sr number of pixels to skip at end of line

The following Figure 1 illustrates such a block structure:

1 X
1

Y

W1

W2

y0

y1

y2

y3

x0 x1 x2 x3

s1a

s2

sra

srb

s1c

r2

r1

A

B B

Block A: ha,s1a,1,r1,0,0,0,sra
Block B: hb,s1a,1,r1,s2,w2,r2,srb

ha

hb

hc

Block C: hc,s1c,2,r2,0,0,0,srb

C

Figure 1 - Windowed readout

The corresponding readout sequence would look like:

 FRAME TRANSFER
 SHIFT Y0 LINES DOWN
 DO B,L_BLOCK
 READ NEXT BLOCK ENTRY
 DO N,L_LINE
 DO W,L_WINDOW

DO si
SKIP
DO ri
READ ; to Window #wi

L_WINDOW
DO sr
SKIP ; until end of line

L_LINE
 SHIFT 1 LINE DOWN
L_BLOCK

3.5 – Timing

Using the logic analyzer to monitor and record the lines RECV-Strobe,
XMIT-Strobe* and INTA* it was possible to assess accurate timing measurements
for a window 20×20 located at [200;200]; Exposure Time=0ms, no wipe between
images, output __L only (Chip setup CCD57-10 with 528 lines of 560 pixels):

Figure 2

Figure 2 - Timing 1ms/div

 illustrates the overall timing of 1 exposure. The time T0 corresponds to the
frame transfer + skip 200 lines and is well in accordance with previous measures (see
report May 2005).
Immediately following the reply to the command SEX, the command RDA is sent by
the controller and instructs the PMC to prepare for receiving data.
The time T1 is the effective readout time.
The time T2 is the time spent between the reception of the reply to the command RET
(Read Elapsed Time) and the invocation of the command SEX (Start Exposure). It is
by far much larger than the theoretical time between commands as required by the
PMC embedded software.

time [1ms/div]

RECV

XMIT

INTA

SEX

RDA

RET SEX

RDA
DMA transfer done ISR

T1=2.5ms

T2=2.5msT0=3.5ms

20x

replies

Figure 3 shows a close-up of the above timing. It displays the transfer bursts of each
20 pixels as of the readout. Each burst is 20µs long corresponding to the readout time.
The interrupt INTA* is asserted immediately after sending the last pixel. The time
between bursts corresponds to skipping the remaining pixels of the line (560-
220=340), shifting 1 line down, and skipping the first 200 pixels of the line (approx
120µs).

time [100µs/div]

RECV

XMIT

INTA

RET

DMA transfer done ISR

20 blocks of 20 pixels

reply(*) (*)

(*):
Shift 1 line down
Skip 200 pixels

Skip rest of line

Figure 3 - Timing 100µs/div

Figure 4

Figure 4 - Improved timing 20µs/div

 illustrates the detailed timing between 2 images. The INTA* signal is
asserted for 10µs (cleared by the ISR). The interrupt task tintARC being waken up
on semaphore by the ISR returns in less than 20µs, the next command RET can then
be issued approx. 35µs after the interrupt has been asserted.
Following, the next SEX command can now be issued less than 125µs later as a result
of the fine tuning of the reply waiting loop. Active polling based on the construction:

 while (reply not ready)
 while (delay>0)

for (i=N;i>0;i--);
delay--;

 endwhile
 endwhile

where N defines the duration of the active wait. Formerly set to 1250, it could be
reduced to 46; so that the delay can be expressed in micro-seconds.

time [20µs/div]

RECV

XMIT

INTA

RET

DMA transfer done

ISR

20pixels reply

SEX

reply

RDA

T2=125µs

Tint=10µs

The following performances could be achieved:

Timing Performances

Window [20x20] CCD57-10 Unit 1000 Frames
WIPE CHIP <5 ms No Wipe between exposures
FRAME TRANSFER <3 ms ExpTime=0ms
SHIFT 1 LINE DOWN <5 µs Location: [200;200]
SKIP 200 LINES <1 ms
SKIP 200 PIXELS ≈50 µs
READ 20 PIXELS ≈20 µs
TIME to NEXT IMAGE ≈120 µs From RET to SEX
READOUT Left ≈6.5 ms

Max Frequency ≈150 Hz

Full Frame Left ≈3.3 Hz

Table 1 – Performances

The following diagram shows the behavior of the pure readout time as a function of
the number of pixels readout. All windows are square and located at [200;200]. The
exposure time is 0ms with no wipe between exposures using output Left only.
Measurements have been done on loops of 1000 images.

Window Pixels Readout Time
[ms]

Cycle Time
[ms]

20 × 20 400 6.5 6.9
30 × 30 900 8.1 8.5
40 × 40 1600 9.8 10.2
50 × 50 2500 11.9 12.4
100 ×100 10000 26.3 26.7
150 ×150 22500 46.8 47.3

Full Frame 296736 302.2 302.8

Readout Time

y = 0.0018x + 6.824
R2 = 0.9968

0
5

10
15
20
25
30
35
40
45
50

0 5000 10000 15000 20000 25000

Pixels

tim
e

[m
s]

Readout
Linear (Readout)

4 – Conclusions & Future activities
Even though the beginning of the mission did not look too promising, as almost 2
days were spent in getting the system acquiring images, many questions, issues could
be addressed which helped a lot getting a better understanding of the overall
architecture, function, data flow.
Time could also be found to discuss possible enhancements and their implementation.
The major concerns are related to the actual development environment (DSP assembly
code) and the complexity of the DSP 56301 (embedded PCI interface, embedded
DMA controller).

The next activities will aim at:

• Implementing the 2 windows mode readout.
• Establish the formula to estimate the effective exposure time and readout time

as a function of the setup.
• Investigate feasibility and cost of data unscrambling on DSP
• Investigate feasibility and cost of data processing on DSP

___oOo___

	Report on NGTCCD Workshop mission
	1 – Purpose of the mission
	2 – Test system description
	2.1 - Hardware
	2.2 - Software
	3 – Activity report and tests
	4 – Conclusions & Future activities

