Date: 2005-10-06

From: R.Reiss & P.Duhoux

Settings for ARC-78 Power Board

Procedure:

1 - Connect +24Vdc to CON1

2 - Set Jumper JP12

3 - Power On

4 – Chip cooling set-point:

The potentiometer **RW1** accessible on the front panel shall be tuned for obtaining 0.52V (\approx -30°C) across the Test Points GND (black) and TSET (red immediately left from GND) both on the front panel.

5 - Alarm set-points:

Name	Test Point	Component	Setting	Correspondence
CCD_HOT	S1	R111	3.7V	≈ +38°C
COTD_OK	S2	R113	0.9V	≈ -20°C

6 - Peltier cooler Set-points:

Name	Component	Setting	Correspondence
MAXV	R59	0.9V	≈ 3.6V
MAXIP	R61	0.9V	≈ 3.6A

- 7 Power Off
- 8 Remove jumper JP12

Observations:

The signal **CCD_HOT** should in fact be named **CCD_NOT_HOT** as the electronics implements a negative logic. Hence the DSP code shall revert this bit in order to restore a positive logic (DSP Register **x**: **HDR** bit 4).

When the cooling is interrupted, the Peltier element warms up and the notification via the driver of this dysfunction shall occur when the temperature increases above $+38^{\circ}$ C. In case of a failure of the Peltier element, the chip may not reached the set point of -30° C. The notification via the driver shall occur when the chip temperature is above -20° C. The LED **D15** is Red when the chip temperature is above -30° C + 1.5° C = -28.5° C; and is Green when the temperature is below -30° C -1.5° C = -31.5° C. In between, the LED is switched Off. The control of this LED is independent of the signals **CCD_HOT** and **COLD OK**.