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Abridged

The Atacama Large Millimeter/submillimeter Array (ALMA) will achieve unprecedented amount of deep, high-
resolution observations with its upcoming upgrades. The planned advancements will significantly enhance
ALMA’s spectral bandwidth, accelerate spectral scanning, and improve sensitivity across all observations.
While these upgrades promise new scientific capabilities, they also present significant operational challenges,
particularly in data reduction, quality assurance, and data management.

Image reconstruction is inherently complex due to factors such as sparse sampling, varying instrumental
responses, diverse celestial source morphologies, a range of astrophysical processes and pervasive noise.
Data volume handling of the imaging products is also a challenge. Currently, ALMA’s interferometry imaging
products are streamlined using mitigation techniques to reduce computational costs, which facilitates quicker
delivery of calibration and imaging products to the Principal Investigators. However, this approach has led to
the ALMA Science Archive missing many images resulting from the data reduction pipeline’s mitigation efforts.

ALMA currently generates 1 TB of scientific data daily, a rate expected to increase by at least an order
of magnitude over the next decade. Upgrades to receivers and the correlator will enhance sensitivity and
efficiency, resulting in single-field and mosaic cubes that are at least two orders of magnitude larger than the
current gigabyte-sized cubes. While these advancements will significantly boost observational capabilities,
they will also heighten computational demands for data reduction and quality assurance.

Exploration and testing of alternative image processing techniques are already essential. Innovative so-
lutions are necessary to ensure a complete archive of imaging products and facilitate effective data mining.
Advanced algorithms are required for reducing processing time and for managing the big data regime, as the
number of observed spectral lines doubles and resolution improves. The employed algorithms have to deliver
robust and reliable results to minimize the need for human intervention.

To address these challenges, we propose exploring artificial intelligence methodologies for imaging to
enhance ALMA’s scientific impact. This includes tackling issues such as thresholding, continuum subtrac-
tion, detection of extended emissions, separation of point-like sources from diffuse emissions, weak signal
detection, mosaic analysis, and improving processing speeds. Imaging algorithms have been tailored using
astro-statistics and astro-informatics techniques, i.e. RESOLVE and DeepFocus. With the aim in mind to enhance
supervised ML techniques, a new ALMA simulator ALMASim has been developed. ALMASim is aided by an em-
pirical noise simulator NOISEMPIRE to address realistic noise properties in ALMA simulated data. All software
utilized in this study is openly accessible to the scientific community, giving them extremely high legacy value.
Looking ahead, the need to further develop, test and optimize artificial intelligence techniques is even more
crucial. These efforts should prioritize comparing the accuracy, precision, speed, and data-handling capacity
of each software to establish performance benchmarks. Such comparative analysis will pave the way for new
opportunities, including the development of science platforms for the user community and software optimized
for real-time image analysis in support of various observatories.

Executive Summary

This study presents an initial exploration of applying artificial intelligence methodologies to ALMA data for
imaging purposes. The advanced imaging techniques are designed to handle large data volumes efficiently,
reducing the need for human intervention while enhancing data processing capabilities. The ultimate goal is to
equip the scientific community with sophisticated tools that produce high-quality, comprehensive imaging prod-
ucts. By optimizing these tools to manage data volume requirements and minimize computational costs, our
approach will unlock new opportunities for data mining and revolutionize observatory operations. Additionally,
new user-friendly solutions can be developed to support the next generation of users, including non-experts.

We utilize two distinct software tools to analyze ALMA data, RESOLVE [1] and DeepFocus [2], addressing
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the challenges outlined in the ALMA2030 development roadmap [3, 4]. The techniques differ in nature: one
is grounded in astro-statistics, while the other focuses on astro-informatics, respectively. Both methods have
demonstrated key strengths and possess essential capabilities crucial for the Big Data era. A documentation
of the developed software is accessible on the GitHub 1 [5] and GitLab 2 [6] Integration Platforms.

Using real and simulated data sets, we investigate these techniques to tackle the synthesis imaging chal-
lenges in view of the ALMA2030 era.

For real ALMA data, we leverage Science Verification (SV) datasets3, the DSHARP [7] and ALCHEMI [8]
Large Programs, as well as other publicly available datasets. The SV process ensures data quality for scien-
tific analysis, preparing the products for thorough quality assessment. Our analysis includes iconic datasets
such as HLTau and BR1202. The DSHARP and ALCHEMI Large Programs provide an excellent foundation for
evaluating RESOLVE’s performance in detecting extended emissions and applying a probabilistic ALMA GOUS
imaging approach to combining interferometric data with single-dish data. Furthermore, we test the algorithm
for its ability to detect the Sunyaev-Zel’dovich effect and analyze data related to the Circum Galactic Medium.
Additionally, the DeepFocus algorithm and its companion software ALMASim4 [9] are optimized for the serendip-
itous detection of faint QSOs within a known sample of ALMA archival data.

For ALMA simulated data, we have several options: ALMASim [9], NIFTy5 [10] and CASA [11]. The latter is
the software package commonly used to calibrate, image and simulate ALMA data. The simulated data are
employed by the available software and comparisons with tCLEAN [12] are performed.

RESOLVE is a robust algorithm and founded on a principled method. It outperforms current imaging tech-
niques for the detection of diffuse emission. Complex structures in the celestial signal and point-like sources
are well detected. Super-resolution imaging is achieved. The required data for this method are the ALMA
observed calibrated visibilities. The input variables, as celestial signal and power spectrum, are initialized and
estimated by the data during the optimization to the most probable image configuration. The reconstructed
images provide for a reliable solution with no need of extra human intervention. RESOLVE is applied to ALMA
continuum images and cubes. The application of the RESOLVE algorithm for aggregate continuum data, spec-
tral cubes, and mosaicking demonstrates significant potential. However, further advancements are essential to
unlock its full capabilities. While RESOLVE reconstructions are computationally intensive, considerable progress
has been achieved, particularly with the development of fast-resolve [13]. Similar optimization efforts are
ongoing for other software, such as CASA tCLEAN [14]. Future enhancements could include integrating ML
methods with RESOLVE, offering opportunities to accelerate computations further and enhance performance.
These developments aim to address the balance between computational efficiency and the algorithm’s robust
imaging quality. Moreover, although RESOLVE is computationally expensive (comparable to a tCLEAN execution),
the algorithm delivers in addition to the deconvolved image other informative products as uncertainty map,
power spectrum, and its uncertainty. The uncertainty map is commonly the most computational expensive. In
addition, self-calibration and full polarization imaging have been developed within the IFT framework [15–18].
This software has the potential to lay the groundwork for a fully automated pipeline and significantly enhance
scientific research.

DeepFocus has demonstrated exceptional image fidelity and computational efficiency in reconstructing
ALMA data cubes. The technique processes ALMA dirty cubes by learning celestial sources, noise patterns,
and the instrumental point spread function directly from the input data. This learning occurs across both spatial
and frequency domains, ensuring that information from each channel is propagated throughout the frequency

1https://github.com/MicheleDelliVeneri/DeepFocus
2https://gitlab.mpcdf.mpg.de/ift/resolve
3https://almascience.eso.org/alma-data/science-verification
4https://github.com/MicheleDelliVeneri/ALMASim
5https://github.com/NIFTy-PPL

https://github.com/MicheleDelliVeneri/DeepFocus
https://gitlab.mpcdf.mpg.de/ift/resolve
https://almascience.eso.org/alma-data/science-verification
https://github.com/MicheleDelliVeneri/ALMASim
https://github.com/NIFTy-PPL
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Figure 1: The application of artificial intelligence and ML in astronomy and astrophysics continues to grow rapidly. The
volume of publications focusing on these techniques has surged in response to the increasing availability of large datasets
from observatories like the Vera Rubin Observatory and space missions like JWST. This increase reflects the shift toward
using AI/ML to handle massive datasets that are impractical for human analysis (created on Sep 11, 2024)

spectrum. By effectively leveraging spatial and frequency data, this approach enables extreme data compres-
sion. DeepFocus is also highly adaptable, thanks to its integration with the ALMASim package, which supports
training, testing, and validation on a wide range of celestial signals. The coupling of ALMASim with the additional
tool NOISEMPIRE6 [19] introduces a more accurate representation of noise distributions typical of ALMA data.
It separates and categorizes various noise components from archived ALMA images, facilitating the identifica-
tion of decorrelation patterns caused by noisy antennas or other issues. In addition to enable simulation-based
inference, a future potential for NOISEMPIRE lies in its application to alarm systems, aimed at improving obser-
vatory throughput and enhancing data quality.
Astro-informatics holds significant potential for revolutionizing data management in science archives and oper-
ational processes. Supervised ML has the potential to significantly enhance ALMA’s operations by supporting
real-time image analysis for astronomers on duty, as well as aiding data mining efforts and support the Princi-
pal Investigators. This technology can streamline the analysis process, providing quick insights and improving
overall data accessibility. Furthermore, automated cataloging of data from each ALMA Cycle would simplify
data access, making the archive more efficient.

Based on the current investigations, RESOLVE emerges as the optimal algorithm for robust detection of
diffuse emission and faint sources. Meanwhile, DeepFocus, integrated within ALMASim, is well-positioned to
address the performance challenges introduced by the Wideband Sensitivity Upgrade (ALMA2030) [3]. As
ALMA transitions into the Big Data era, advancements in interdisciplinary domains are essential to address
challenges in image reconstruction, classification, and simulation-based inference (Fig. 1). With the planned
upgrades, ALMA image analysis increasingly demands adaptive algorithms capable of uncovering patterns in
data, learning from new inputs, and maximizing the extraction of meaningful information.

6https://github.com/Ibaronch/NOISEMPIRE

https://github.com/Ibaronch/NOISEMPIRE
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Acronyms

ACF Autocorrelation Function
AI Artificial Intelligence
ALCHEMI ALMA Comprehensive High-resolution Extragalactic Molecular Inventory [8]
ALMA Atacama Large Millimeter/submillimeter Array
ALMASim ALMA Simulator within the supervised ML contest [9]
AGN Active Galactic Nucleus
ARC ALMA Regional Centre
BlobsFinder detect and analyze structures, commonly used in astroinformatics
BRAIN Bayesian Reconstruction with Adaptive Image Notion
C2PAP Computational Center for Particle and Astrophysics
CAE-VAE Convolutional Autoencoder - Variational Autoencoder, combining CNN and probabilistic models
CASA Common Astronomy Software Applications [20]
CMB Cosmic Microwave Background
CNN Convolutional Neural Network, a Deep Learning NN
CPU Central Processing Unit
CRF Correlation Random Field
Dask open-source parallel computing library in Python
DeepFocus A meta-learning pipeline powered by deep learning techniques [2]
DeepGRU GRU in Deep Learning, type of RNN
DenseNet Dense Convolutional Network with high parameter efficiency
DL Deep Learning, ML capable to train large NN.

It is inspired by the structure and functioning of the human brain
DRM Data Reduction Manager
DSHARP Disk Substructures at High Angular Resolution Project [7]
DSFG Dusty Star Forming Galaxy
EA East Asia
EASC European ALMA Support Centre
EB Execution Block
ECML-PKDD European Conference on Machine Learning and Principles and Practice of

Knowledge Discovery in Databases
EfficientNets CNN architecture with family of models focused on accuracy optimization
EI Expected Improvement, common acquisition function in Bayesian Optimization
ESAC European Science Advisory Committee
ESO European Southern Observatory
EU Europe
F2F Face to Face
FFT Fast Fourier Transform
FG Focused Global, combine local and global information to improve the performance of models
FP False Positive
FWHM Full Width at Half Maximum
FQDN Fully Qualified Domain Name
GOUS Group Observation Units Set
GP Gaussian process, powerful and flexible framework in statistics and machine learning
GPU Graphics Processing Unit
GRU Gated Recurrent Unit, type of RNN capable to learn from sequences of data
HFP High spatial Frequency Patterns, for better interpretation and enhancement of images
HPC High Performance Computing
IFT Information Field Theory

https://ui.adsabs.harvard.edu/abs/2021A%26A...656A..46M/abstract
https://almascience.eso.org/
https://github.com/MicheleDelliVeneri/ALMASim
https://www.origins-cluster.de/en/infrastructure/c2pap
https://casa.nrao.edu/
https://github.com/MicheleDelliVeneri/DeepFocus
https://almascience.eso.org/almadata/lp/DSHARP/
https://wwwmpa.mpa-garching.mpg.de/~ensslin/research/research_IFT.html


ESO Internal ALMA Development Study

ALMA2030: Interferometric Image Reconstruction
Page: 7

INAF Istituto nazionale di astrofisica
INFN Istituto Nazionale di Fisica Nucleare
IoU Intersection over Union, fundamental metric for evaluating the performance of object detection
IP Internet Protocol
IR Infrared
IRA Istituto di Radioastronomia
JAO Joint ALMA Observatory
JWST James Webb Space Telescope
LSTM Long short-term memory units, type of RNN designed to handle sequence prediction problems
MAP Maximum-A-Posteriori
MEM Maximum Entropy Method, reconstruct images from limited or noisy data
MFS Multi-Frequency Synthesis deconvolution
ML Machine Learning
MLS Machine Learning Solution
MNRAS Monthly Notices of the Royal Astronomical Society
MPA Max Planck Institute for Astrophysics, Garching
MPI Message Passing Interface
MS measurement set
MTMFS Multi-Term MFS deconvolution
NA North America
NIFTy Numerical Information Field Theory
NFMCP New Frontiers in Mining Complex Patterns
NN Neural Network
NRAO National Radio Astronomical Observatory
ORP Opticon Radionet Pilot
PBS Portable Batch System
PDF probability density function
PiP Pip Installs Packages
PSF Point Spread Function
QSO Quasi Stellar Object
RADPS Radio AStronomy Data Processing System
ResNet Residual Neural Network, a popular CNN architecture
RESOLVE Radio Extended SOurces Lognormal deconVolution Estimator [1,18]
RMS Root Mean Square
RPN Region Proposal Networks, type of NN used in object detection tasks
RNN recurrent neural network
SB Scheduling Block
SED Spectral Energy Distribution
Slurm Simple Linux Utility for Resource Management
SNR Signal to Noise Ratio
SSH Secure Shell
STC Scientific Technical Committee
SKA Square Kilometer Array
SV Science Verification data
SZ Sunyaev-Zel'dovich effect
TAP Table Access Protocol
TNG Illustris The Next Generation project [21]
TP True Positive
U-Net “U” shape Network (specialized CNN for image segmentation)
UniFi University of Florence, Italy
UniNa University of Naples Federico II, Italy
VLA The Karl G. Jansky Very Large Array
VLBI Very Long Baseline Interferometry
VLTI Very Large Telescope Interferometer
WSU Wide Band Sensitivity Upgrade

https://www.mpa-garching.mpg.de/
https://gitlab.mpcdf.mpg.de/ift/nifty/-/tree/NIFTy_7
https://gitlab.mpcdf.mpg.de/ift/resolve
https://almascience.eso.org/alma-data/science-verification
https://www.unifi.it/
http://www.unina.it
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1 Study evolution and achievements

The starting of this study coincided with the beginning of the pandemic and a significant slow down of the
scientific world. Despite the outbreak, crucial advancements were made by the BRAIN study members to
demonstrate that artificial intelligence is suited to tackle both detection of extended emissions and to provide
speed-up procedures.

A well attended kick-off meeting occurred on December 11, 2020. The great affluence to this meeting
demonstrated the importance to address current open questions in image analysis from a different perspective
and technology. The goal of this study is to investigate advanced techniques, i.e. those algorithms capable
to learn from the data and to overcome known imaging issues, such as detection of extended emissions and
speed up convergence procedures. A core team was created with astro-informatics, astro-statistics, ALMA
and CASA experts to address the goals of this study.
Following the requests during the initial meeting, seminars were provided by Kumar Golap, Tak Tsutsumi, Ben
Bean (NRAO) and Dirk Petry (ESO) to address the tCLEAN task specifications, mosaicking issues and the
ALMA data structure.

On December 15, 2022, the mid-term review meeting was held. The panel recommended continuing
the study and advised engaging with the CASA and Pipeline teams. They also suggested further investigations,
including: (1) addressing complex non-Gaussian source detection both spatially and spectrally; (2) applying the
method to ALMA continuum and cubes; (3) enhancing faint source detection; and (4) exploring joint methods.
All of these recommendations have been addressed, and the outcomes are detailed in this report.

A weekly work cadence has been established to maintain a sense of accomplishment and track progress.
A dedicated group on Teams was created to document advancements, including meeting minutes, presenta-
tions, publications, and shared files.

The milestones of this study can be summarized as follows:

1. December 2020: Kick-off meeting

2. December 2020-February 2021: coordinated lectures on ALMA data structure and analysis

3. September 2021+: ALMA SV data applications

4. March 2022: Proposal submission to C2PAP, titled “Enabling Big Data Science in ALMA 2030 with
machine learning” (Delli Veneri M., Guglielmetti F., Testi L.)

∗ 3 computational nodes, 256 GB of RAM and 3 TB of storage

5. April 2022: application to Leibniz Data Center through C2PAP support

∗ Cloud services: CPU : 1 computational node, 256 GB of RAM, 3 TB storage, GPU: 2 GPUs with at
least 12 GB of memory, 480 hours for Training and Inference, between 720 and 2160 hours of fine
tuning depending on the cluster availability

6. May-June 2022: Michele Delli Veneri is an ESO visitor for one month

∗ Contributed talk at SciOps2022, titled “Data Cleaning, Detection and Characterization of Sources in
ALMA Data through Deep Learning” (Delli Veneri M., Tychoniec Ł., Guglielmetti F., Villard E., Longo
G.)

∗ ESO Azure MLS accounts (Delli Veneri M., Tychoniec Ł., Guglielmetti F.) CL-PROD-001 MLS workspace.
This is a Microsoft Data Science Solution for ML supported by ESO. MLS environment tested with our
software, but on limited practice due to unsafe ownership on the software.

∗ Contributed talk at AI Forum, titled “3D Source Detection and Characterization of Sources in ALMA
Data through Deep Learning” (Delli Veneri M.)

https://almascience.eso.org/alma-data/science-verification
https://www.origins-cluster.de/infrastruktur/c2pap
https://www.lrz.de/
https://www.eso.org/sci/meetings/2022/SCIOPS2022.html
https://zenodo.org/record/6557227#.Y4M9B7LMK7M
https://zenodo.org/record/6557227#.Y4M9B7LMK7M
https://azure.microsoft.com
https://www.eso.org/sci/meetings/garching/pasttalks.html
https://micheledelliveneri.github.io/AIForum/
https://micheledelliveneri.github.io/AIForum/
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∗ ALMA data cubes simulation development and acceleration. Available on GitHub with 100 ALMA
data cubes (256x256x128) created in 20 seconds.

∗ RESOLVE and DeepFocus applications to simulated and real ALMA data.

7. July 2022:

∗ MaxEnt2022 conference: Invited talk “Bayesian and Machine Learning Methods in the Big Data era
for astronomical imaging” (Guglielmetti F., Arras P., Delli Veneri M., Enßlin T., Longo G., Tychoniec Ł.,
Villard E.) [22]

∗ MaxEnt2022 conference: Contributed talk “Bayesian statistics approach to imaging of aperture syn-
thesis data: RESOLVE meets ALMA ” (Tychoniec Ł., Guglielmetti F., Arras P., Enßlin T., Villard E.) [23]

8. August 2022: article submission to MNRAS “3D Detection and Characterisation of ALMA Sources
through Deep Learning” (Delli Veneri M., Tychoniec Ł., Guglielmetti F., Longo G., Villard E.) [2], pub-
lished November 2022.

9. September 2022: NFMCP (ECML-PKDD 2022) workshop: Contributed talk “3D Detection of ALMA
Sources through Deep Learning” (Delli Veneri M. et al.)

10. October 2022:

∗ ARC All–Hands Meeting: Contributed talk “Update on the ESO internal ALMA development study:
ALMA2030 Bayesian Reconstruction through Adaptive Image Notion” (Guglielmetti F.)

∗ RESOLVE Workshop 2022 at MPI for Radioastronomy. Contributed talk “Bayesian and Machine Learn-
ing Methods in the Big Data era for astronomical imaging” (Guglielmetti F. et al.)

∗ Comparison of DeepFocus and tCLEAN on a set of 1,000 simulated ALMA data cubes.
∗ First applications of RESOLVE to aggregate continuum and mosaicking in the search of SZ effect.

11. November 2022:

∗ Contribution to ORIGINS Annual Science Meeting for GPU usage employing the C2PAP infrastruc-
ture.

∗ Taking advantage of the DRM F2F meeting at NRAO (Charlottesville, VA): Presentation of the study
to Amanda Kepley (NRAO), Ryan Loomis (NRAO), Theodoros Nakos (JAO) with a talk titled:“ESO
internal ALMA development study: ALMA2030 Bayesian Reconstruction through Adaptive Image No-
tion” (Guglielmetti F.). Proposal from Ryan Loomis to make use of the new software in an hybrid
system in CASA.

12. December 2022:

∗ EASC All-Hands meeting: Contributed talk “Update on the ESO internal ALMA development study:
ALMA2030 Bayesian Reconstruction through Adaptive Image Notion” (Guglielmetti F.)

∗ Mid Term review process of this study. The panel support the continuation of the study due to
the high quality of the report and the work of the team. The panel recommends to 1) operate on
sources with complex non-Gaussian structure, both spatially and spectrally; 2) ensure both methods
work on continuum and cubes; 3) push the methods to fainter sources; 4) investigate how RESOLVE
and Deep Learning techniques could be integrated into a joint method.

∗ The team meets to discuss on the outcome of the mid-term review and starts with the requested
advancements.

13. January 2023:

https://github.com/MicheleDelliVeneri/ALMASim
https://maxent22.see.asso.fr/
https://www.mdpi.com/2673-9984/5/1/50
https://www.mdpi.com/2673-9984/5/1/50
https://maxent22.see.asso.fr/
https://www.mdpi.com/2673-9984/5/1/52
https://www.mdpi.com/2673-9984/5/1/52
https://academic.oup.com/mnras/advance-article-abstract/doi/10.1093/mnras/stac3314/6825518?redirectedFrom=fulltext
https://academic.oup.com/mnras/advance-article-abstract/doi/10.1093/mnras/stac3314/6825518?redirectedFrom=fulltext
https://easychair.org/cfp/nfmcp2022
https://events.mpifr-bonn.mpg.de/indico/event/294/overview
https://indico.ph.tum.de/event/7082/contributions/6185/
https://www.eso.org/sci/facilities/alma/developmentstudies/BrainMidTermReview_final.pdf
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∗ Discussions commence on integrating RESOLVE and DeepFocus for enhanced functionality.
∗ Co-Chair of the VLTI and ALMA Imaging Workshop, highlighting the potential of RESOLVE and
DeepFocus to address challenges in VLTI synthesis imaging.

- Talks have been given by several contributors to this study with introductory talks on the topics
of ML given by Prof. Giuseppe Longo and on Information Field Theory (IFT) given by PD Torsten
Enßlin. Specific developments and applications have been discussed by Michele Delli Veneri,
Łukasz Tychoniec, Philipp Frank, Jakob Roth and Jakob Knollmüller.

- The Report on the ESO workshop: VLTI and ALMA Synthesis Imaging Workshop can be found
at [24].

14. February 2023:

∗ ALMASim has initiated new developments to tackle the challenges of simulating extended emissions
in ALMA continuum and cubes. To improve accuracy, a more detailed characterization of noise is
required, and an empirical noise study is being integrated to create synergies with ALMASim. Addi-
tionally, the algorithm is undergoing a significant reimplementation aimed at transitioning away from
CASA.

∗ The RESOLVE team designs new methods and applications to improve the speed up convergence
procedures.

15. June 2023:

∗ Invited talk at the Statistical Challenges in Modern Astronomy VIII: “A BRAIN study to tackle
imaging with artificial intelligence in the ALMA2030 era” (Guglielmetti F.)

16. July 2023:

∗ MaxEnt2023 conference: Poster contribution “A BRAIN Study to Tackle Image Analysis with Artificial
Intelligence in the ALMA 2030 Era” (Guglielmetti F., Delli Veneri M., Baronchelli I., Blanco C., Dosi A.,
Enßlin T., Johnson V., Longo G., Roth J., Stoehr F., Tychoniec Ł., Villard E.) [25]

- Guglielmetti F. part of the advisory committee for the MaxEnt2023

17. September 2023:

∗ STC ESAC online Meeting: Invited talk “BRAIN” (Guglielmetti F.)

18. October 2023:

∗ ASTROINFORMATICS-2023 Conference: (1) Invited talk “A Brain Study to Tackle Imaging with
Artificial Intelligence in the ALMA 2030 ERA” Guglielmetti F. [26],(2) Contributed talk “Deep Fo-
cus and ALMASim – A meta-learner for the resolution of inverse problems and its companion
simulation package” Delli Veneri M. [27]

19. November 2023:

∗ ORP Consortium Meeting: Prof. Gerry Gilmore (Cambridge University/FORTH) has summarized
the key outcomes of the BRAIN study.

20. December 2023:

∗ ALMA at 10 years: Past, Present, and Future: Poster contribution with remote attendance “A
BRAIN study to tackle imaging with artificial intelligence in the ALMA2030 era” [28]

https://www.eso.org/sci/meetings/2023/VLTI-ALMA-IW.html
https://sites.psu.edu/astrostatistics/scma8-program/
https://www.ipp.mpg.de/maxent2023
https://www.mdpi.com/2673-9984/9/1/18
https://www.mdpi.com/2673-9984/9/1/18
https://www.eso.org/public/about-eso/committees/stc-esac/september2023.html
https://astroinfo2023.org/
https://events.mpifr-bonn.mpg.de/indico/event/335/
https://www.almaobservatory.org/en/alma-at-10-years-past-present-and-future/
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∗ Drafting a DFG proposal with a group of collaborators to secure funding for enhancing RESOLVE applied
to ALMA data and other ESO facilities.

21. January 2024:

∗ ALMA Workshop 2023A, Ishigaki Island, JP: Invited talk “A BRAIN Study to tackle Image Analysis
with Artificial Intelligence” (Guglielmetti F.)

22. February 2024:

∗ ESO Informal discussion: “A BRAIN study to tackle imaging in the ALMA2030 era” (Guglielmetti F.)

23. April 2024:

∗ Submission Large Grant INAF Ricerca fondamentale “Enhancing Real-Time Image Analysis for
SKA and ALMA Radio Interferometry”: Our focus is on elevating DeepFocus, a Meta-Learner, for
real-time image analysis. We propose to expand the capabilities of ALMASim, DeepFocus’ simulator, to
tackle issues specific to new-generation facilities and provide real-data-based sky simulations suitable
for training ML algorithms. DeepFocus’ improvements will allow us to mine archival data to search
for serendipitous sources on known samples, such as pulsars. The software is built on an open-
source framework and capable of being adapted to future facilities as AtLAST. Our collaboration brings
together expertise from observatories such as ALMA and SKA, as well as AtLAST, encompassing
proficiency in data mining and ML.

∗ Submission Mini Grant INAF Ricerca fondamentale “Towards an Empirical Noise Identifica-
tor and Generator for Multi-wavelength Astronomical Images” (PI I. Baronchelli) to expand the
capabilitites of NOISEMPIRE.:

24. May 2024:

∗ IRA Coffee talk, Bologna: Invited talk “NOISEMPIRE, an empirical approach to ALMA noise simu-
lation” (Baronchelli I.)

∗ IRA Coffee talk, Bologna: Invited talk “Deep Focus: a Deep Learning Metalerner for ALMA imaging”
(Delli Veneri M.)

∗ AI for Radioastronomy Mini-Conference:

- Invited talk “DeepFocus” (Delli Veneri M.)
- Invited talk “A BRAIN study to tackle imaging in the ALMA 2030 era” (Guglielmetti F.)

25. June 2024:

∗ IRA Coffee talk, Bologna: Invited talk “A BRAIN study to tackle imaging in the ALMA2030 era”
(Guglielmetti F.)

∗ THE PROMISES AND CHALLENGES OF THE ALMA WIDEBAND SENSITIVITY UPGRADE Con-
ference: Invited talk “A BRAIN study to tackle imaging in the ALMA 2030 era” (Guglielmetti F.) [29]

26. September 2024:

∗ Julian Rüstig (MPA/DZA) visiting ESO to contribute to the GOUS/ data combination imaging with
RESOLVE

27. October 2024:

∗ Final review of this study

https://sites.google.com/view/ashleybarnesastro/eso-informal-discussion
https://info.ira.inaf.it/en/seminars/singlevent/?id=263
https://info.ira.inaf.it/en/seminars/singlevent/?id=264
https://www.chalmers.se/en/current/calendar/ai-for-radioastronomy/
https://info.ira.inaf.it/en/seminars/singlevent/?id=266
https://www.eso.org/sci/meetings/2024/wsu.html
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28. November 2024:

∗ ARC All–Hands Meeting: contributed talk “A BRAIN study to tackle imaging in the ALMA2030 era”
(Guglielmetti F.)

∗ ORP consortium meeting: Presentation on Joint Activity 3.4, focused on enhancing interoperability
and improving user experience across optical and radio interferometry.

∗ The final report of the BRAIN study, addressing all RIDs, has been submitted to the ESO Internal
ALMA Development Study Coordinator.

29. December 2024:

∗ ADVANCED DATA PRODUCTS Conference: Invited talk “A BRAIN study to tackle imaging in the
ALMA 2030 era” (Guglielmetti F.)

https://events.mpifr-bonn.mpg.de/indico/event/411/overview
https://www.eso.org/sci/meetings/2024/adp.html
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2 The Core Team

Fabrizia Guglielmetti is ARC Scientist at ESO and Principal Investigator of this study. Her interest is on the
development of advanced imaging techniques. She earned her PhD in astrophysics on image analysis em-
ploying Bayesian Probability Theory for a joint estimation of background and celestial signals (LMU, 2010).

Philipp Arras, formerly PostDoc at MPA, is expert on Bayesian statistics applied to imaging algorithms for ra-
dio telescopes. He developed theoretical models for inference algorithms for the unification of calibration and
imaging, multi-spectral imaging, polarization imaging, data fusion with single dish data and Very Long Baseline
Interferometry (VLBI). Expert on the RESOLVE technique.

Ivano Baronchelli (INAF/IRA) an expert in multiwavelength data reduction and analysis, with particular refer-
ence to the study of Galaxy formation and evolution in the context of large spectro-photometric surveys. He is
currently specializing in ML techniques and he is the developer of NOISEMPIRE.

Matteo Bonato (INAF/IRA) an expert in ALMA data analysis and simulation generation, he extensively con-
tributes to ALMASim.

Giuliana Cosentino is a Research Fellow at ESO, where she conducts her own scientific research using
ALMA and other telescopes. She is expert in star and cloud formation and how these affect galaxy evolution.
Part of her functional work is dedicated to this study.

Michele Delli Veneri (INFN) is an expert in astro-informatics and data science, with a master’s in Astrophysics
and a PhD from the Department of Electrical Engineering and Information Technology at the University of
Naples Federico II. As the developer and designer of DeepFocus and ALMASim, he has gained extensive expe-
rience in imaging for both ALMA and the Square Kilometer Array (SKA).

Torsten Enßlin (MPA), Associate Professor at the Ludwig-Maximilians-University and IFT Group Lead. He is
expert in image analysis for multi-wavelength observations, with special emphasis on radio synthesis observa-
tions.

Vishal Johnson (MPA), PhD student at LMU and expert in IFT, astro-statistics and RESOLVE.

Giuseppe Longo (UniNa), Professor in astrophysics, chair of the Data Science Initiative at the University
Federico II: Data Science program, current president of the International AstroInformatics Association. His
research interests are in development and application of novel ML methods to a variety of problems.

Jakob Roth (MPA) PhD student at LMU with experience in Bayesian inference algorithms and their application
in astronomy, and especially radio interferometry. Jakob Roth contributed to the development of NIFTy and
RESOLVE.

Alvi Rownok (UniNa) is a graduate student of UniNa, specializing in the development of astro-informatics
techniques.

Julian Rüstig (MPA/DZA) is a PhD student at LMU with expertise in IFT, astro-statistics, and RESOLVE.

Luca Sannino (UniNa) is a graduate student at the University of Federico II and working on ALMASim.

https://wwwmpa.mpa-garching.mpg.de/~ensslin/research/research_IFT.html
http://datascience.unina.it/
http://astroinformatics.info/astroinfo
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Łukasz Tychoniec (Leiden Observatory) former Research Fellow at ESO. He is expert in star and planet for-
mation, protostellar jets, protoplanetary disks, early planet formation, submillimeter interferometry employing
mainly ALMA and the James Webb Space telescope.

Eric Villard, ESO/ALMA Advanced Data Product Scientist (ESO) involved with ALMA observatory in opera-
tions since 2010: Commissioning Scientist, System Astronomer, Deputy Head of Data Management Group,
Head of the ALMA Array Performance Group.

Since the start of the study, several contributors moved to new positions. Philipp Arras (MPA) is a strategy
consultant at Bain & Company. Łukasz Tychoniec (ESO) moved to Leiden Observatory, where he joined the
Allegro node. Carmen Blanco worked within the IFT group (MPA) and applied RESOLVE to ALMA data for the
detection of the SZ effect. Andrea Dosi completed his master from the University of Naples Federico II and
supported the development of ALMASim. Luca Sannino (UniNa) graduated with a degree in Physics and has
since started his Master’s program.

This Study is also supported by Paola Andreani (ESO), Massimo Brescia (UniNa), Stefano Cavuoti (Un-
iNa), Ed Fomalont (NRAO), Matteo Guardiani (MPA), Alessandro Marconi (UniFi), Federico Montesino Pouzols
(ESO), Urvashi Rau (NRAO), Andy Strong (MPE), Udo von Toussaint (IPP), Crystal Brogan (NRAO), Sanjay
Bhatnagar (NRAO), Allen Caldwell (MPP), Sandra Castro (ESO), John Hibbard (NRAO), Elizabeth Humphreys
(ESO), Mark Lacy (NRAO), Dirk Muders (MPI for Radioastronomy), Martin Zwaan (ESO).

https://lukasztychoniec.github.io/
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3 Software selection

This study represents a pioneering effort to apply artificial intelligence (AI) methodologies to ALMA data for
imaging purposes, marking the commencement of a comprehensive feasibility assessment aimed at revolu-
tionizing data processing in the field. By addressing two primary objectives (i.e., determining the applicability
of AI methods for ALMA data processing and evaluating their effectiveness), we lay the groundwork for future
advancements in astrophysical imaging.

Our approach is grounded in the complementary disciplines of astrostatistics [30, 31] and astroinfor-
matics [32, 33]. Astrostatistics provides the rigorous statistical framework required to model, analyze, and
interpret the complex and often noisy datasets produced by ALMA. This ensures that we can make reliable
inferences about underlying astrophysical phenomena, even in the presence of incomplete or uncertain data.
Astroinformatics, in turn, offers the computational tools and techniques required to handle large-scale astro-
nomical datasets, such as ML, data mining, and advanced visualization methods. Together, these fields enable
both efficient data management and scientifically robust results.

The synergy of these two fields is essential: astroinformatics enables us to handle data at the scale and
complexity required for modern astronomy, while astrostatistics allows us to extract meaningful, scientifically
valid insights from that data. Together, they provide the foundation upon which we can explore the potential of
AI to enhance ALMA’s imaging capabilities and drive future innovations in astrophysical research.

3.1 Selected Algorithms: RESOLVE and DeepFocus

We utilize two distinct software tools, RESOLVE [1] and DeepFocus [2], both selected based on extensive experi-
ence in their respective areas.

RESOLVE, grounded in astrostatistics, has been extensively applied in a variety of fields, including astro-
physics, astro-particle physics, biology and medicine, under the guidance of Torsten Enßlin, a key figure in the
development of IFT. This methodology has advanced numerous areas of research (e.g., [34–37]). RESOLVE has
demonstrated its effectiveness in self-calibration and imaging with joint uncertainty quantification, particularly
with VLA and VLBI data [15–17]. Ongoing developments include extending this algorithm to polarization imag-
ing, covering Stokes parameters I, Q, U, and V. An overview on IFT applications can be found at this link.

DeepFocus, rooted in astroinformatics, is derived from the work of Giuseppe Longo, a key contributor and
founder in the astroinformatics domain. The contributions coming from his team are encompassing a large
variety of topics as data mining, ML for image analysis, development of computational tools for astronomical
surveys, virtual observatories (see [38–41]), and leadership in education and outreach within the field (more in-
formation can be found clicking at this link). Some of their contributions outside astronomy can be found at this
link. The DeepFocus algorithm is built on autoencoder architectures, which have been optimized for ALMA data
through extensive testing and fine-tuning of various deep learning models, such as Convolutional Autoencoders
(CAE), Variational Autoencoders (VAE), U-Nets, and Region Proposal Networks (RPN). The model selection
process also incorporated cutting-edge methods like DeepGRU and ResNet, which were benchmarked against
alternative architectures like Transformers and EfficientNets.

The integration of these advanced methodologies aims to significantly improve data analysis workflows
and the overall user experience in ALMA data processing.

https://wwwmpa.mpa-garching.mpg.de/~ensslin/research/research_IFT.html
https://www.docenti.unina.it/#!/professor/47495553455050454c4f4e474f4c4e4747505035374132324638333943/news_media
https://www.iris.unina.it/cris/rp/rp36401?sortBy=2&order=DESC&type=all
https://www.iris.unina.it/cris/rp/rp36401?sortBy=2&order=DESC&type=all
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3.1.1 Advantages

RESOLVE and DeepFocus bring significant advantages in terms of the quality of data products, and they have
the potential to largely improve the user data-processing experience both if used as a standalone tool and in
combination with CASA.

RESOLVE has proven its value through successful applications with VLA data, making it a promising can-
didate for ALMA. It offers the additional benefit of joint uncertainty quantification and shows potential for ad-
vancing ALMA’s data processing capabilities. Meanwhile, DeepFocus demonstrates its adaptability to ALMA’s
imaging challenges, particularly through the use of advanced architectures like 3D Deep Learning models to
resolve imaging issues. When extended with Bayesian surrogate models in the taxonomy process, it enables
uncertainty quantification. Furthermore, DeepFocus can be implemented for real-time image analysis, serving
both operational needs and user support.

Together, these tools have the potential to revolutionize the processing of ALMA data, enhancing both
accuracy and efficiency in imaging workflows.

3.1.2 Additional Techniques Considered

The original proposal also considered two additional algorithms: the Bayesian Mixture Model technique, an
unsupervised learning method that provides robust background-source separation, and the Maximum Entropy
Method (MEM) algorithm, which, while nonlinear and useful for correcting limited sampling, faces challenges
with prior knowledge assumptions.

Firstly, the Bayesian Mixture Model technique [42] is an unsupervised learning method. The mixture model
technique [42] is equipped with a defined model to explore the data and extract the required information from
the data for a robust background-source separation. Based on Bayesian probability theory, the technique is
capable to jointly estimate source signal and background, providing a multi-resolution analysis for the detection
of faint sources. This technique for the use of ALMA needs further development and exploration, mainly driven
by technology advancements, e.g. [43]. Please note that there is another technique worth of dedicating time
and effort, that is described in [44]. The methodology described in [44] takes into account the representa-
tion of spectral signal in absorption/decrement and emission. The principles can be implemented within other
techniques, as RESOLVE. The methodology [44] was designed as a natural extension of the Bayesian Mixture
Model technique [42]. However, a dedicated human power is needed to achieve these developments. Sec-
ondly, the maximum entropy deconvolution (MEM) algorithm [45] is not further supported. MEM is a nonlinear
deconvolution algorithm and useful to correct for the limited sampling of the u-v plane. However, it assumes a
sky brightness of the sources as a prior knowledge. This algorithm showed the prior knowledge not adapting
well to the data and hindering faint source detection. However, improvements in model description could make
MEM competitive again, building on previous work [45–47].

The development of these methods will require further exploration and workforce resources when applied
to ALMA, also in conjunction with data coming from other observatories (as JWST, Chandra, SKA, AtLast).

3.1.3 Future Potentials

As interdisciplinary approaches continue to advance, emerging methods offer new opportunities for improving
imaging techniques. These novel approaches require rigorous comparison with established methods to ensure
their effective integration into the broader scientific community. We propose conducting comprehensive quality
assessments of several algorithms from the literature, comparing their precision, accuracy, data handling, and
processing speed.

The following list represents current promising developments in enhanced image analysis and data mining
for ALMA data. However, this list is by no means static (new techniques and algorithms are continually being
published, and others may rise to prominence as the field evolves). As such, this list is a moving target, and
future work will undoubtedly expand upon or refine these approaches.
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Promising Image Analysis Methods Some of the following works represent promising developments for
AI-enhanced image analysis in astronomy:

[48] (2024): Image dynamic 3D structures.

[49] (2024): High-performance computing (HPC) implementation for efficient least-squares estimation of
sky intensities in radio astronomy.

[50] (2023): Deep learning models for deconvolution in interferometric radio data.

[51] (2023): Deep learning applied to ALMA solar data imaging.

[52] (2023): Regularized Maximum Likelihood approach to ALMA interferometric continuum imaging.

[53] (2023): A wideband, wide-field spectral imaging and deconvolution technique.

[54] (2022): Bayesian modeling package providing uncertainty quantification for image and source proper-
ties.

[55] (2020): Super-resolution imaging in ALMA data using sparse modeling techniques.

[47] (2018): High-performance GPU implementation of non-gridded Maximum Entropy Method (MEM) for
imaging.

[56] (2018): Convolutional neural networks (CNNs) for detecting extended extragalactic radio sources.

[57] (2017): WSClean, a multiscale, multifrequency deconvolution algorithm.

[58] (2017): Matched filter techniques for weak signal detection.

[59] (2017): Clumpfinding algorithm for detecting weak signals in interferometric data.

[60] (2016): Clustering and pattern recognition for analyzing ALMA data cubes.

Promising Data Mining Techniques Several ML approaches hold potential for mining valuable insights from
large astronomical datasets:

[61] (2023): CNNs for detecting specific continuum sources in the ALMA archive.

[62] (2023): ML surrogate models for simulating protoplanetary disk evolution, bridging theoretical predic-
tions with observational data.

[63] (2023): Superresolution techniques for analyzing protoplanetary disk structures.

[64] (2022): ML methods to automate detection and analysis within protoplanetary disks.

[65] (2020): Data mining techniques for spectral line analysis.

3.1.4 Conclusion

The recent Nobel Prizes in Physics and Chemistry underscore the transformative impact of AI methodologies
in scientific discovery. In particular, the laureates have been recognized for their pioneering work in either
developing new AI techniques or leveraging AI to advance research in their respective fields. This global
recognition aligns with our study’s objective to revolutionize ALMA data processing by integrating cutting-edge
AI approaches, further illustrating the profound influence AI has on modern science.

The integration of AI techniques into ALMA data processing represents a significant step forward in the
field, setting the stage for continued advancements and exploration of new methodologies. As interdisciplinary
approaches evolve, it is essential to conduct rigorous comparisons between established and emerging tech-
niques to ensure effective utilization within the broader scientific community.
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3.1.5 A Call for Acknowledgment in AI-Driven Discoveries

Our AI tools are designed to evolve and improve over time, ultimately reaching their full potential to empower
the scientific community in making groundbreaking discoveries. As these tools are refined and increasingly
adopted, we seek to ensure that proper recognition is given for their development. We envision these teams’
contributions as an integral part of the discoveries enabled by these tools, and we believe that their involvement
should be acknowledged in any resulting publications and breakthroughs. In essence, this is a call to protect
the intellectual property of these AI innovations, ensuring that these teams are credited as the creators and
developers of the methodologies that drive future advancements.

4 RESOLVE

The RESOLVE software is a versatile radio aperture synthesis tool that utilizes Bayesian principles [66] and is
framed within the context of IFT [67, 68]. It is supported by NIFTy, which offers prior models, variational infer-
ence algorithms, and capabilities for simulated data generation. RESOLVE has been refined for the use of ALMA
data. Taking the u-v-w coordinates from the calibrated measurement set (MS) in the u-v plane, the Response
operator R acquires the information of the dirty beam — R takes into account the frequency dependence of
the beam. R is an integral ingredient for the reconstruction of the detectable celestial signal. The input data
(or calibrated MS) d are modelled as a combination of celestial signal s corrupted by the dirty beam and by
the noise n (systematic and random errors): d = Res + n. The process of synthesizing an image involves esti-
mating the posterior probability density function (PDF) of potential true sky signal configurations arised by the
Hamiltonian sampling: P (s|d) = e−H(s,d)

Z(d) . More information on the foundations and description of the algorithm
can be found at [1,67–70].
To efficiently access the information embedded in non-linear, high-dimensional probability distributions, the IFT
team has developed and implemented new procedures within the NIFTy package. These include techniques
such as Metric Gaussian Variational Inference (MGVI) [71] and Geometric Gaussian Variational Inference
(GeoVI) [72], as well as the integration of Google’s high-performance ML framework JAX [73], which supports
automatic differentiation. While JAX enhances computational efficiency, the variational approaches introduced
by MGVI and GeoVI offer fast and accurate results by approximating the posterior distributions’ local Gaus-
sianity. These techniques can be employed by RESOLVE to accelerate convergence, achieving a substantial
speedup of up to 10x. However, further applications are necessary to fully quantify the impact of these ad-
vancements.

To summarize, RESOLVE aims to significantly increasing the quality of the reconstructed images which was
successfully demonstrated in the publications listed above. These improvements so far came at the cost of an
increased computational demands. The development of fast-resolve [13] has substantially reduced these
complexities, achieving competitive reconstruction times without compromising image quality.

4.1 Proof of concepts

Working on the u-v plane, the long lasting weighting issue of ALMA visibilities was addressed and solved
[23,25]. The successful application to HL-Tau data (SV data) with RESOLVE and the comparison with CASA pro-
vided the proof of concepts. In Fig. 2 (image on the right), the continuum image at 1.3 mm (233 GHz) applied
to one spectral window with a width of 1.827 GHz (128 channels) is obtained with RESOLVE. The image on the
left shows the original reconstructed IF image using the full band 6 and band 7 data [74].
The image, shown on the right of Fig. 2, is derived by the algorithm as representation of the posterior mean
of the Hamiltonian sampling of the reconstructed celestial signal. A full set of posterior density function esti-
mations of the celestial signal are provided and shown in Fig. 3. For each P (s|d) a corresponding uncertainty
map is estimated. At the converged sample, RESOLVE’s answer to the ill-posed problem of image reconstruction
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Figure 2: On the left, HL-Tau press release combining bands 6 and 7 [74]. On the right, HL-Tau imaging with RESOLVE on
band 6 and one spectral window (one quarter of the available data for band 6).

provides a posterior mean of the sampled estimated signals and a mean uncertainty map: See Fig. 4, on the
upper/lower left are shown the posterior mean of the signal detection and the corresponding uncertainty map.
Still in Fig. 4, the power spectrum Ps(k⃗) of the process that generated the signal s as a function of spatial fre-
quency k and its uncertainty estimation are shown. A representation of the distribution of data weights versus
baselines is also reported (right).

In the future, we plan to apply RESOLVE to HL Tau data by combining observations from Bands 6 and 7,
comparing the results with those obtained using CASA, as shown in Fig. 2 (left image). Additionally, several
SV datasets for HL Tau are available in Bands 3, 4, and 9, offering extremely high angular resolution. These
datasets present a valuable opportunity for a comprehensive quality assessment and comparison of imaging
results generated by RESOLVE and CASA. To fully realize this potential, further development of RESOLVE within
the ALMA framework is essential, particularly to enhance support for self-calibration processes. Building on
the foundational work of [15], [16], and [17], this advancement will require dedicated resources to refine the
algorithm and rigorously test it on the available data. Securing funding for this effort will enable the integration
of cutting-edge methods, ensuring significant improvements in imaging quality and calibration efficiency. For
more details on SV data, see the ALMA Science Portal.

4.1.1 The power spectrum

The signal’s power spectrum Ps(k⃗) describes how the signal’s variance is distributed over the different fre-
quencies of the signal [67]. Low- and high-frequency modes correspond to large- and small-scale features of
the signal, respectively. An example of power spectrum reconstructed from the RESOLVE procedure for image
reconstruction is shown in Fig. 4.

The power spectrum contains interesting information about the statistical properties of the physical signal.

https://almascience.eso.org/alma-data/science-verification/alma-data/science-verification/hl-tau-b9-b2b
https://almascience.nrao.edu/almadata/sciver/HLTauBand7/HLTau_Band7_Readme
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Figure 3: RESOLVE: Set of Hamiltonian samples displaying the estimated posterior PDF of the inferred celestial signal for
the HL-Tau data shown in Fig. 2, right. Each sample is similar with negligible deviations in reconstructed intensity and
shape, as they correspond to the final iteration of the converged optimization procedure.
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Figure 4: RESOLVE: Left, the mean posterior PDF (upper) and its uncertainty (lower) of the estimated celestial signal for
the HL-Tau data shown in Fig. 2, right. Center, power spectrum estimation Ps(k⃗) corresponding to the estimated posterior
mean (upper) and its uncertainty (lower). Right, representation of RESOLVE’s distribution of data weights versus baselines
(upper) and number of visibility versus effective baseline length (lower) at the convergence iteration.

If the power spectrum falls with higher frequencies, it corresponds to higher variations on large-scale features
compared to small-scale features. This is a typical behavior for many physical signals. When analyzed with suf-
ficient resolution, such signals are smooth functions. The slope of the power spectrum determines the degree
of smoothness. Steep spectra correspond to smooth signals, while flatter spectra correspond to signals with
more small-scale variations. Peaks and bumps in the power spectrum indicate oscillations with the respective
frequency. Flat power spectra correspond to white noise.

4.2 Simulations

The major advantage in using simulated datasets for quality assessment of the imaging procedures is the
selection of the input parameters, allowing to control the shape and brightness of the sources, as well as
configuration and behaviour of the telescope array. The downside of this approach is the difficulty to realistically
model the noise acquired during an observation and the simplistic assumptions about the sky brightness.
Nonetheless, this test allows to understand how RESOLVE works and to compare source detection and flux
estimates with the tCLEAN task [12] in CASA [11, 20]. In the following, two applications are shown that are
tailored at testing the algorithm capabilities to overcome source confusion and weak signal detection in single
pointing and continuum images. The RESOLVE algorithm is shown to be successfully applied to ALMA simulated
data.

The simulation in Fig. 5 aims at challenging the algorithm to detect weak and extended as well as bright
point–like sources spread over an ALMA synthetic observation. The simulated data set is processed with
RESOLVE and the tCLEAN imaging task in CASA. Taking the simulated data set as benchmark, RESOLVE provides
both weak and extended source detection and more realistic source characteristics with respect to tCLEAN.
RESOLVE powerfully provides detection of diffuse emission, weak signal, point–sources embedded in diffuse
emissions.



ESO Internal ALMA Development Study

ALMA2030: Interferometric Image Reconstruction
Page: 22

Figure 5: RESOLVE (left) and tCLEAN (center) application to an ALMA continuum simulated data set (right). The colorbar
shows a normalized flux intensity to allow for a visual comparison on recovered source characteristics.

Figure 6: Sky model which serves as an input for creating simulated ALMA MS: Single pointing and continuum image.
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Figure 7: Iteration 0: First set of Hamiltonian sampling from the starting iteration of ALMA single pointing and continuum
simulated data set (Fig. 6). The initial uninformative guess of RESOLVE is shown.
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Figure 8: Iteration 5: After 5 iterations, the set of Hamiltonian sampling of the ALMA single pointing and continuum
simulated data set (Fig. 6) shows that the algorithm learns about the signal s.
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Figure 9: RESOLVE learns the signal s (Fig. 6) as shown at (almost) convergence stage (iteration twenty-four). The mean
of the posterior PDFs of the detected signal s given the data d is shown in the lower left image. The image on the lower
right shows the reconstructed power spectrum samples, starting to deviate from the initial uninformative guess.



ESO Internal ALMA Development Study

ALMA2030: Interferometric Image Reconstruction
Page: 26

Figure 10: Maps of the brightness distribution in the sky plane of the simulated data (Fig. 6). Upper row: RESOLVE’s
reconstructed image (left) and its uncertainty map (right). Lower row: tCLEAN solution using natural weighting (left) and
robust = 0.5 following the Briggs weighting scheme (right).
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Parameter Mean
Offset 26

Zero mode 1±0.1
Fluctuations 5±1

Power spectrum slope -2±0.5
Flexibility 1.2±0.4
Asperity 0.2±0.2

Table 1: Example of input parameters for the RESOLVE application to simulated data and its estimated values.

Fig. 6 shows the sky model generated with simalma task in CASA. A simple 2D array consisting of five
Gaussian components of different brightness, size and position angle are generated. The sky model is gen-
erated, imposing physical properties to the sky, such as spherical coordinates, pixel dimensions, field-of-view
and brightness in physical units. Afterwards, the task is simulating observations of the given sky model with
the ALMA observatory. For this specific case we simulate observations with ALMA configuration C-3 at 230
GHz (ALMA band 6), which results in an effective resolution of 0.7 arcsec, due to the longest available baseline
being ∼ 500 m. The simalma task returns a calibrated MS, that consists of complex visibilities. Those visibilities
are a Fourier transform of the sky brightness, therefore inverse Fourier transformation provides a dirty image
of the observed sky.
In Fig. 10, lower row, the reconstructed images with tCLEAN are shown. The task tCLEAN is run without any
constraint on where to look for point sources in the image (i.e., without any masking as input parameter), for
20 × 103 iterations, or until threshold of 0.3 mJy/beam is reached. The pixel size of the reconstructed image
is set to 0.1 arcsec and the image size is set to 512 × 512 pixels. The noise threshold level of 0.3 mJy/beam
is selected so that the tCLEAN algorithm does not attempt to find sources from the residual image consisting
purely of noise. The RMS of the dirty image is 0.1 mJy/ beam and the SNR is 3σ. In the default settings,
the weighting of the baselines is set to natural (image on the left), which means it associates the baseline
with weight proportional to the sampling density (i.e., the most covered baselines have the highest weight).
Since at larger scales the sampling is much denser, this puts more weight on lower resolution, which results
in achieving lower resolution than the sky model image. Natural weighting will give the largest beam and the
best surface brightness sensitivity. Therefore we also attempt imaging with Briggs weighting [75] with robust
parameter 0.5 (image on the right), which moves the balance of weighting toward longer baselines increasing
the resolution but decreasing signal-to-noise ratio.
For RESOLVE image of the simulated data, 30 iterations are needed to reach convergence (see [13] for the latest
information about clock times). In Figs. 7, 8, 9, the first, sixth, twenty-fourth iterations of RESOLVE are shown.
The P (s|d) samples are displayed, including the posterior mean < P (s|d) > and the power spectrum samples
Ps(k⃗). Given an initial state of no information, the algorithm searches for the optimal sky configuration from
the given data (visibilities and dirty beam). In Fig. 10 (upper row), the converged posterior mean PDF of the
detected simulated signal < P (s|d) > and its uncertainty map are shown. The uncertainty map displays the
relative error as a measurement of precision, to determine the magnitude of the absolute error in terms of the
actual size of the measurement process. No assumption was made on the presence of point sources in the
data. Input parameters of the RESOLVE run are summarized in Table 1: See [76] for a detailed explanation of
the parameters.

RESOLVE’s reconstructed image exhibit a smooth background in agreement with the simulation (Fig.6).
Bayesian probability theory allows us to estimate the uncertainty of the hypothesis of detecting a source sig-
nal. What is not a celestial source and potentially noise is captured by the description of uncertainty on the full
image. Therefore, the uncertainty map does not only address detected sources. Structures in the image away
from the detected sources provide evidence that the uncertainty quantification can not be a smooth function.
The tCLEAN reconstructed images are characterized by negative values in several areas. Negative values arise
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Figure 11: Example of reconstructed fluxes (sources 1− 3)
from the application of RESOLVE and tCLEAN to Fig. 6

Comp model tCLEAN tCLEAN RESOLVE
natural Briggs

1 34.11 24.67 24.96 26.68±5.76
2 23.31 21.68 22.19 23.59±6.72
3 16.69 16.31 16.57 17.82±3.86

Table 2: Peak flux (in Jy arcsec−2) of different
components on the simulated image.

by the recurrent application of subtraction during the major-minor cycles and residual estimations. Images ob-
tained by tCLEAN and other CLEAN based algorithm often contain negative values in regions with very low or
zero surface brightness. Physically this is not possible as there is no negative flux.7 Moreover, a comparison
of the reconstructed fluxes [Jy · arcsec−2] with the two algorithms is shown in Table 2 where the corresponding
components numbered 1-2-3 are indicated in Fig. 11. The model column provides the simulated sky model’s
flux values. Both algorithms provide flux reconstruction close to the ideal values. tCLEAN with natural weigthing
provides the worst estimates, being those simulated sources mainly point-like sources. RESOLVE gives recon-
structed flux values (and their uncertainties) 7% closer to the simulated values with respect to tCLEAN.

RESOLVE within IFT enables the estimation of parameters along with their associated uncertainty distribu-
tions. While classical approaches do not inherently provide full uncertainty distributions, these can be derived
as a second step on the image products. This additional analysis has not yet been considered in the current
study but will be prioritized in future applications. For scenarios where the sky model predominantly comprises
extended Gaussian structures, multi-scale CLEAN may provide a more computationally efficient and specialized
alternative. Such cases will be carefully considered in future imaging verification studies.

4.3 DSHARP Large Program

The application of RESOLVE to real data is performed on a well-studied data set, whose survey was designed
to optimize the spatial resolution and contrast sensitivity to continuum emission substructures [7]. This is
the ALMA Large Project 2016.1.00484.L, known as Disk Substructures at High Angular Resolution Project
(DSHARP). The sample is shown in Fig. 12. The data were taken at long baselines allowing us to test RESOLVE
on high resolution data while detecting extended emission. In fact, a secondary goal of this project was to
identify corresponding gas structures and infer other relevant bulk disk properties (e.g. geometry). Expertise
on this science topic is brought into the study by Ł. Tychoniec (ESO).

The protoplanetary disk Sz114 is chosen within the sample, because of its relatively smooth structure [23].
Sz114 is shown as first image on the left, second row, in Fig. 12.

Both tCLEAN and RESOLVE are applied to a single spectral window to directly compare the two techniques.
From the publicly available calibrated MS, we extracted spectral window 9 with split task in CASA and binned it
into a single channel.

7Please note that physical values of the sky distribution can not be a negative number. Bayesian analysis allows one to assign,
e.g., to the background component the signal not described by the celestial sources. It allows to correct for effects as the one due
to the missing short spacing. If the prediction is consistent with the data, then an increment in the uncertainty map should also
increase e.g. at correspondingly to the missing short spacing.

https://scholarlypublications.universiteitleiden.nl/handle/1887/3147349
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Figure 12: This image is taken from [7]: Gallery of 240 GHz (1.25 mm) continuum emission images for the disks in the
DSHARP sample. Beam sizes and 10 au scalebars are shown in the lower left and right corners of each panel, respectively.
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Parameter Mean
Offset 20

Zero mode 1±0.2
Fluctuations 3±1

Power spectrum slope -4±2
Flexibility 4±0.8
Asperity 2±0.8

Table 3: Example of input parameters for the RESOLVE application to DSHARP data’s Sz114 and its estimated values.

Figure 13: Image reconstruction with RESOLVE and tCLEAN of ALMA observation of Sz114 (Fig. 12). Upper row: recon-
structed image by RESOLVE (left) and the relative error map (right). Lower row: tCLEAN reconstructed images with standard
cleaning algorithm (right) and with multi-scale algorithm (left).
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Figure 14: On the left, the reconstructed image by RESOLVE of Sz114 as shown in Fig. 13. On the right, the reconstructed
image of Sz114 with tCLEAN as delivered by the Large Program team [7] (In table 4 indicated with ”best tclean”).

Radius (arcsec) Best Fit tclean RESOLVE
Hogbom Multiscale

Peak Flux (Jy·arcsec−2) 1.57 1.55 1.49 5.8 ± 3.82
0.06 8.63 8.85 8.95 9.48 ± 1.07
0.15 22.79 22.82 22.53 23.21 ± 0.68
0.35 47.45 47.07 47.24 47.24 ± 2.79

Table 4: Peak (in Jy·arcsec−2) and integrated flux at different radii of the Sz114 disk.

The estimated input parameters of the RESOLVE application to Sz114 is shown in Table 3. Please note the
power spectrum slope with respect to the result in Table 1. The achieved steeper power spectrum slope on the
real application is reasonable since less structures are present at small scales with respect to the simulated
case. This result is in agreement with the reconstructed image of Sz114 by the RESOLVE algorithm (Fig. 13),
upper left, and the uncertainty map, upper right. The uncertainty map shows that no aggregate structures are
detected and that the quantified uncertainty increases at increasing signal detection (absolute uncertainty).

Standard and multiscale tCLEAN imaging are used because the observed disk presents large variety of
spatial scales. Images are characterized by 0.005 arcsec (pixel size), 1024× 1024 pixels and 20× 103 iterations
or until the noise threshold of 0.05 mJy is reached. In case of multiscale clean, three scales (0, 7, 28 pixels) are
specified to find three types of sources in the data: point source (scale=0), extended (Gaussian) components
with FWHM of 7 and 28 pixels. The resulting tCLEAN images are displayed in Fig. 13, lower row.

In Fig.14, a visual comparison between the reconstructed images of Sz114 from RESOLVE and from tCLEAN.
This tCLEAN image is produced employing the aggregate continuum as delivered by the Large Program team
[7]. We define this tCLEAN solution on the aggregate continuum as the best tCLEAN image. RESOLVE is capable
to achieve improved emission detection. Table 4 provides a comparison of integrated flux estimates measured
over different areas of the disk (radius). The three tCLEAN solutions are very similar. The fluxes provided by
RESOLVE are close to the benchmark values. The only deviation found is at the peak. tCLEAN approximate
the dirty beam to a Gaussian, while RESOLVE encodes the dirty beam from the uv-plane into the Response
operator. The distribution at the peak collects more flux than a Gaussian. In other words, it is expected that
convolving a RESOLVE image with a Gaussian kernel of the size of that used by tCLEAN should produce images
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with the same peak flux — the discrepancy is hypothesized to be due to higher resolution reconstruction by
RESOLVE. Therefore, it is reasonable that at the peak the measured flux is larger than the value provided by
tCLEAN.

RESOLVE is providing an high-fidelity image of the protoplanetary disk Sz114 and robust estimation on the
fluxes and their uncertainties.

4.3.1 Application to Elias 27: Continuum and Spectral Cube Imaging

Figure 15: Elias 27 from the DSHARP ALMA project at 240 GHz (1.25 mm) continuum. On the left, the fiducial image as
given by the DSHARP team [77]. On the right, RESOLVE mean sky map of Elias 27.

The DSHARP project sought to observe a large number of protoplanetary disks at high resolution (35 mas)
to uncover small-scale substructures within the disk material and investigate their connection to the planet
formation process. To assess the likelihood that detected structures are genuine, it is crucial to compare the
results using multiple robust algorithms.

In Figs. 15 and 16, the application of RESOLVE to a protoplanetary disk sample, Elias 27, from the ALMA
DSHARP project [7,77] is shown. In Fig. 15, the image on the left is the fiducial continuum detection of Elias 27
from the DSHARP data release [77], produced using a self-calibrated image with CASA. The image on the right
shows the result of applying RESOLVE to the Elias 27 continuum ALMA data, displaying the mean sky map. In
this case, no self-calibration was applied. The image measures 1500×1500 pixels on the site, corresponding to
a field-of-view of 3.33×3.33 mas2 on the sky. Based on the work of [15–17], we anticipate further improvements
in detecting source details when self-calibration is incorporated into the RESOLVE framework for ALMA data. The
novel procedure will allow the introduction of gain estimations and their uncertainties. In Fig. 16 we show on the
top the channel maps detection of 12CO J = 2−1 as provided by [7]. The lower images display two channels at
velocities of 1.35 km/s and 2.05 km/s, reconstructed using RESOLVE. Each image comprises 2000×2000 pixels,
representing an area of 10 × 10 mas2 on the sky. The detection of the diffuse emission occurs separating it
from the continuum emission. The diffuse emission shapes can be well recovered by imaging each channel
separately. Although the combined cube images are not yet as good as the clean reconstruction the preliminary
results look promising; there is hope that suitable tuning of hyperparameters allow the reconstruction of good
cube images [13]. We expect better images with improvements in code efficiency. In this regard, a combined
application with RESOLVE and DeepFocus seems promising.
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Figure 16: Elias 27 from the DSHARP ALMA project, channel maps of the 12CO J = 2 − 1. Top: the fiducial image as
given by the DSHARP team [77]. Bottom: RESOLVE mean sky map of the channels close at the LSRK velocity of 2.05 (left)
and 1.35 (right) km s−1.This is a proof-of-concept. See text for more details.

In collaboration with DSHARP team members, we are considering to extract physical information from
continuum and cube images with RESOLVE. IFT will be employed to develop physics-informed imaging and
spectral reconstruction methods, offering comprehensive uncertainty quantification for all scientific results.
This approach will provide the significance of any detected continuum emission structures, along with atomic
and molecular lines from their disks, outflows, and planets, ensuring a robust scientific interpretation.

4.3.2 Computational aspects

Following the work in [76], Section 5.3, RESOLVE was initially found to be 60 times slower than multi-scale
CLEAN. However, subsequent advancements, as discussed in [13], have significantly improved its performance,
achieving speeds up to 140× faster compared to its initial applications to DSHARP data (benchmarking was
performed on an older version of RESOLVE, as reported in [76]).

For DSHARP imaging, reconstructions using RESOLVE required approximately 3–4 hours for 40 iterations
of a Maximum-A-Posteriori (MAP) run. MAP provides a faster approximation of the full posterior, assuming the
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posterior follows Laplace’s approximation. In contrast, a MGVI run for the same dataset typically takes around
3 days for 40 iterations. These timings assume the use of 8–16 cores on a cluster to reconstruct a 2000× 2000
pixel image across 16–60 frequency channels.

The earlier DSHARP imaging tests using RESOLVE were completed in a few hours, though convergence
was not accounted for in those runs. We have not directly compared RESOLVE’s computational time with tCLEAN.
A proper comparison would require reprocessing the data using the latest CASA version. Such a comparison
remains an important goal, especially as tCLEAN evolves to include options for Multi-Frequency Synthesis
(MFS) and Multi-Term MFS (MTMFS) deconvolution, along with GPU-enabled gridding options, hopefully, for
ALMA data.

4.4 Application to RX J1347.5-1145, Detecting the Sunyaev-Zel’dovich Effect

Figure 17: Proof of concept of RESOLVE capabilities to detect the SZ effect in ALMA data. The archived ALMA source
RX J1347.5 − 1145, from project 2013.1.00246.S, scheduling block RX J1347 a 03 7M , mosaic, has been accounted.
Left: RESOLVE mean sky map. Right: The corresponding archived ALMA product, primary beam corrected. A bar of 50
arcsec length has been added to both images to compare the detected depths. See text for more details.

The archived ALMA target RX J1347.5− 1145, from project code 2013.1.00246.S, was utilized to evaluate
the performance of RESOLVE in detecting “decrement” like features, such as those caused by the Sunyaev-
Zel’dovich (SZ) effect. The SZ effect is due to scattering, which preserves photon number, of the Cosmic
Microwave Background (CMB) photons to higher energies, leaving a decrement at longer wavelengths and
producing an increment at shorter ones. A comprehensive discussion on the astrophysical significance of SZ
effect detection can be found at [78,79].

For this analysis, a single pointing from the mosaic data in the scheduling block (SB) RX J1347 a 03 7M
was selected. In Fig. 17, the left panel shows the output of the RESOLVE algorithm, applied to a single execution
block (uid : //A002/X966cea/X22ee). The faint distortion of the CMB, observable at (sub)millimeter wave-
lengths, appears as a dark region in the image. A region of 50 arcseconds is outlined to provide a sense of the
scale of the detected area. The panel on the right shows the archived ALMA product obtained on the same
science target and same frequency range. This tCLEAN-ed image is applied on the whole mosaic, accounting
for all QA0 PASS execution blocks, and primary beam corrected. Also in this case a bar of 50 arcsec length
has been added for comparison.
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The RESOLVE application has been recorded in GitLab and accessible clicking at this link. Although we
provide an initial proof-of-concepts, we aim at extending the applications of RESOLVE to the following ALMA
archived sample:

- SPT-CLJ2031-4037: project code 2019.2.00067.S, MOUS uid: uid : //A001/X14c3/X326, SB name: SPT−
CLJ2 a 03 7M . The aggregate continuum shows a nice SZ detection. The spectral window (SPW) 16 is
the one with the most prominent continuum detection of the SZ effect.

- SPT-CLJ2106-5844: project code 2016.1.01175.S. This is composed by 2 SBs with less prominent decre-
ment features.

- SPT-CLJ2106-5844: project code 2017.1.01649.S, composed by 2 SBs taken with the 12-m array with less
prominent decrement features.

- SPT-CLJ2106-5844: project code 2021.1.01212.S taken with the 12-m array. The single SB shows some
weak line emission detection in SPW 23 (expected CO line), the continuum may detect the SZ effect
although this is not pronounced. The mfs SPW with more pronounced decrement is the 21.

- SPT-CLJ2106-5844: project code 2022.1.00333.S, MOUS uid: uid : //A001/X2d1f/X80c, SB SPT −
CL J a 03 TM1. The CO line is nicely detected in cube SPW 17, and the aggregate continuum is detected
in emission only.

This intriguing sample still presents several unresolved questions. For example, by combining all the Band
3 data from project 2017.1.01649.S, the study by [80] achieved a detection significance greater than 20 sigma
using a Bayesian forward modeling approach for the cluster SPT-CLJ2106-5844. A comprehensive analysis of
all datasets for this science target, focusing solely on continuum detection, is expected to yield a highly detailed
SZ map (private communication with TM).

Furthermore, the science target SPT-CLJ2031-4037, observed in mosaic mode, can be fully analyzed
with the current capabilities of RESOLVE. By combining all execution blocks, the resulting image is anticipated
to be equally impressive. The continuum-cleaned map should reveal a shock feature that aligns well with the
Chandra X-ray observations, lending credibility to the authenticity of this structure.

4.5 Mosaicking and Group OUS Imaging

By adopting a Bayesian approach to data integration, the RESOLVE algorithm can be enhanced to effectively
combine interferometric and single-dish data. This is achieved by treating each set of data as distinct likelihood
functions. Consequently, the combined likelihood is formulated as:

P(d|s⃗) =
∏
pq

Pp
SD(d|s⃗) · P

q
IF(d|s⃗), (1)

where p and q represent the single-dish (SD) and interferometer (IF) data, respectively. This represen-
tation includes the condition that when imaging celestial objects larger than the primary beam size of a radio
telescope, it is essential for both single-dish and interferometer instruments to map the science target in order
to capture the object’s full extent. The observations, i.e. the associated data d, jointly constrain a common
sky model s⃗. This model is reconstructed by incorporating a prior PDF and applying advanced optimization
techniques (refer to [71,72]).

To demonstrate the efficacy of this approach on mosaicking, we present reconstructions of synthetic data
and compare them to those obtained using the standard tCLEAN method (see [12]). The synthetic data, derived
from an image of M51 (depicted in the upper left panel of Fig. 18), was generated using the simalma task
in CASA. The results indicate that the RESOLVE-based algorithm achieves satisfactory reconstructions, with a
comparative analysis of residuals revealing that RESOLVE generally provides higher fidelity in capturing fine
details of the input data. This is evident from the reduced spread of residual pixels (see Fig. 18). These

https://gitlab.mpcdf.mpg.de/cblanco/cluster_alma_ift_sze
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findings suggest that RESOLVE can deliver accurate reconstructions, provided that uncertainty quantification
from the calibration is understood and properly propagated to imaging processes.
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Figure 18: Comparative analysis of RESOLVE and CASA tCLEAN on synthetic multi-pointing ALMA data. The top row displays,
from left to right, the input image of M51 used for generating the synthetic ALMA data, and the reconstructions of M51
obtained using RESOLVE and CASA, respectively. The bottom row presents the residuals relative to the input image. The left
panel shows binned image pixel residuals comparing RESOLVE (red) and CASA reconstructions to the input, while the middle
and right bottom panels display the image residuals on the image plane.

Our next step is to apply RESOLVE to perform the GOUS imaging on ALCHEMI data. Comparisons with
other techniques, as Feathering [81] and the joint convolution algorithm [82], shall be performed.

4.6 Ongoing developments and Outlook

The technique RESOLVE, applied to ALMA data, provides for image reconstruction from sparse samples and
proper uncertainty quantification. RESOLVE is based on IFT, which extends Bayesian probability theory to phys-
ical fields. Bayesian probability theory allows one to extend from point estimates to a distribution of solutions
which enables the derivation of optimal values and uncertainties for the quantities of interest. Input informa-
tion to the imaging technique is the observed and calibrated visibilities. The dirty beam is derived from the
uv coordinates and incorporated into the Response operator in the deconvolution process. The input data are
processed within a probabilistic approach allowing one to model the celestial signal and noise in the data in one
unique algorithm. Products of the technique are reconstructed ALMA deconvolved image and its uncertainty
map, the power-spectrum and its uncertainty, estimates of input parameters and their uncertainties. Through
simulated and real data, we demonstrate that RESOLVE is applicable to ALMA data. Detections of extended
emissions and structures in protoplanetary disks are promising. The application to Elias 27 for continuum de-
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tection, when compared with self-calibrated tCLEAN’ solution, RESOLVE is capable to improve the detection of
the science target and the image of the diffuse emission.
The RESOLVE algorithm has been applied to detect the Sunyaev-Zel'dovich (SZ) effect (decrement detection)
and to analyse mosaics of images.
Substantial efforts have been made by the IFT team to make the algorithm computationally efficient. Vari-
ational inference has been introduced with the works of [71] and [72] making feasible to have estimates on
high-dimensional posterior distribution functions. JAX binding [73] is making possible to use CPUs and GPUs.
A new version of RESOLVE [13] is now at least 140 times faster than the previous version when executed on a
GPU. A systematic comparison between the runtime of RESOLVE and tCLEAN has not been performed. However
in some applications the runtime of RESOLVE and fast-resolve was measured. Based on results VLA data
Cygnus A reconstructions of RESOLVE is approximately 60 times slower than wsCLEAN and fast-resolve com-
parably fast when executed on GPU. Nevertheless on other datasets these timings might be different, and also
the runtime of wsCLEAN and CASA tCLEAN might be different. The exploration of cube imaging required intense
work, but a proof-of-concept is given. IFT is allowing a joint continuum and line detection. However, the models
have to be refined in order to provide cleaner images. At the time of the writing, RESOLVE is tested on our ARC
cluster at ESO. We will provide first assessments on the execution speed and define its computational cost.
Furthermore, we want to exploit the unique capability of the Bayesian analysis to (1) combine the information
of different instrument types, as ALMA and JWST; (2) combine archival data as performed by [35]; (3) create
dust maps of deep observations as performed by [83].
Efforts to extend the capabilities of the RESOLVE algorithm must also address user concerns regarding the
interpretation of super-resolution images. The weighting scheme utilized by RESOLVE is adaptive and based
on baseline noise, operating as a natural weighting scheme. While the output resolution is a free parameter
determined by the model, it is constrained by the chosen pixel number and field of view, which together define
the pixel size (or pixel resolution). Importantly, the maximum achievable resolution is set by the largest baseline
in the data. Therefore, selecting an appropriate input resolution consistent with the data’s intrinsic limitations is
essential. Comparative analyses of RESOLVE with tCLEAN under specific weighting schemes (e.g., as outlined
in [76]) are under consideration to provide further insights into performance differences.
To improve usability and instill greater confidence in the outputs, several future developments are proposed.
(1) Provide Angular Resolution Metrics: Introducing a dedicated task to compute and output the effective an-
gular resolution of RESOLVE images will enable users to directly compare the effective resolution with the native
resolution of the input data, as well as any super-resolution enhancements applied. (2) Expand Uncertainty
Mapping: The algorithm already provides uncertainty maps. These can be extended to illustrate spatial vari-
ations in resolution, offering users additional context on image reliability. These outputs, in FITS format, shall
include headers specifying the achieved resolution. (3) Write a User Guide for Super-Resolution: A compre-
hensive user guide will be developed to educate users on interpreting super-resolution results. This document
will cover the algorithm’s methodology, limitations, and best practices for evaluating outputs to ensure informed
usage.

These advancements will not only expand the algorithm’s functionality but also address key challenges
in user interpretation, thereby facilitating broader adoption and more effective application of RESOLVE in astro-
nomical research.
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Figure 19: Deep Learning Pipeline schema. Numbers indicate the logical flow of the data within the pipeline.

5 DeepFocus

The Deep Learning Pipeline, named DeepFocus, is fully described in the refereed article accepted for publica-
tion on MNRAS: click on this link to be redirected to the article [2].
DeepFocus is designed as a modular system allowing to expand the pipeline according to the problem at hand.
In operations we always need to cope with new modes or instrumental improvements (e.g. electronic upgrades,
as [3]). New units can be connected to the pipeline as well as replacements with others during software re-
finements. The schema of the composition of the Pipeline can be seen in Fig. 19. Currently DeepFocus is
composed by six Deep Learning models: a Convolutional Autoencoder for source detection within the spa-
tial domain of the integrated data cubes (Blobs Finder, stage 3), a Recurrent Neural Network for denoising
and peak detection within the frequency domain (DeepGRU, stage 6), and four Residual Neural Networks for
source characterization (ResNets, stage 10).
The algorithm solves for ID = Idb ∗ I + n, where ID, Idb, I and n are the ALMA dirty cube, the dirty beam,
the target sky image and any additional noise in the image, respectively. The information contained in each
channel in the ALMA cube is accounted in the whole frequency domain, correlating information between pixels
along the frequency axis of the cube. It has been demonstrated that the combination of spatial and frequency
information has the capability to improve completeness while decreasing spurious signal detection. Compar-
ison with tCLEAN perfomed analysing a set of 1000 simulated ALMA data cubes indicated that DeepFocus
improves in speed up procedures by a factor of at least 140.

5.1 Proof of concepts

Supervised ML techniques need training, testing and validation to become that powerful tool to outperform any
current algorithm to date in processing time. Most of ALMA archived data are galaxies, with compact and al-
most point-like shape. The potential capabilities of this algorithm have been tested on ALMA SV interferometric
data: BR1202-0725 [84]. Please refer to the article [25] (reachable clicking this link) to get more details on this
application (Subsection 2.2 and Figure 4).

https://academic.oup.com/mnras/advance-article-abstract/doi/10.1093/mnras/stac3314/6825518?redirectedFrom=fulltext
https://www.mdpi.com/2673-9984/5/1/50
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This trial shows that both galaxies in the ALMA cube are detected with DeepFocus, while the standard approach
in CASA missed the serendipitous quasar (southernmost object). In [84], self-calibration was performed to de-
tect this serendipitous source. The source fluxes derived by DeepFocus agree with the ones reported in [84].
The computing time for the image restoration of one ALMA cube for BR1202-0725 with DeepFocus occurred in
∼ 35 µs.

5.2 Simulations

Simulated ALMA cubes are used for training/testing/validation as well as reliability and quality assessment of
the developed Deep Learning pipeline. Section 3 of the journal article “3D Detection and Characterisation of
ALMA Sources through Deep Learning” [2] provides a detailed description of the developed artificial data sets.
The CASA simulator capabilities [20], [85] were extended for the creation of ALMA cubes. 2D Gaussian Com-
ponents in the spatial plane with 1D Gaussian component (emission lines) in frequency space are used to
create the artificial emission lines in addition to the continuum signal. ALMA Cycle 9 C-3 configuration with
43 antennas was chosen within the simalma task in CASA. ALMA interferometric MSs are created employing
the CASA’ simobserve task. Dirty cubes are produced employing tCLEAN. Corrupted by white noise, the dirty
cubes’ RMS is adjusted to a wished SNR.

A set of 5000 ALMA cubes (360x360 pixels, 128 channels and total bandwidth of 1.28 GHz) are created
with a source at the center and other randomly distributed in the image with random extension. The brightest
source is located at the center and characterized by a SNR > 10. The minimum and maximum flux densi-
ties generated are respectively 0.97 and 407.4 mJy/beam. Uniformity on the distribution of simulated source
parameters is achieved (Fig. 3 in [2]). See upper and middle rows of each set in Figs. 26 and 27 for some
examples of produced ALMA dirty cubes and model images.

In these simulations, only limited test cases were given as training set, mainly consisting of continuum and
single to multiple Gaussian shape lines. Widening the training set to complex emissions as well as empty sky
images was beyond the scope of this study.

5.3 Novelty of the method

The pipeline architecture can be roughly divided into three phases, based on the assumptions made on the
data. First, sources are assumed to be present within the image and the algorithm is trained to detect those
sources. Second, sources to be deemed true must show emission lines in the frequency domain. The al-
gorithm searches for those emission lines by removing noise in order to boost SNR and recognise spectral
peaks. If spectral peaks are found, the algorithm preserves the sources for characterization, otherwise those
initial identifications are discarded as false detection. The latter operation is performed through SNR and ge-
ometrical criteria involving the reference integrated dirty image and all images produced by integration along
the detected emission ranges. Third, sources passing the selection criteria are fed to an array of ResNets to
regress the morphological source parameters.

As future outlook of the development of DeepFocus and its applications, we plan to implement a cross-
check using training exclusively on empty images containing only noise. This approach aims to assess the
reliability of the algorithm by testing its performance in detecting spurious signals in purely noisy fields.

Currently, these tests on empty images have not yet been conducted, as the training phase for ML algo-
rithms on such data was not considered. We want to incorporate these tests as future development, enabling
a more comprehensive validation of the algorithm’s detection capabilities. This step will provide further confi-
dence in the robustness of DeepFocus’s results, particularly in scenarios with low signal-to-noise ratios.

https://academic.oup.com/mnras/advance-article-abstract/doi/10.1093/mnras/stac3314/6825518?redirectedFrom=fulltext
https://academic.oup.com/mnras/advance-article-abstract/doi/10.1093/mnras/stac3314/6825518?redirectedFrom=fulltext
https://academic.oup.com/mnras/advance-article-abstract/doi/10.1093/mnras/stac3314/6825518?redirectedFrom=fulltext
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5.3.1 Blobs Finder

Blobs Finder solves for the deconvolution problem in the image domain, i.e. to recover the normalized denoised
integrated sky images from the integrated dirty images (stage 3 in Fig. 19). The output probability maps are
censored and all pixels with probability higher than a given threshold are connected into potential sources
through a friend of friend algorithm. Bounding boxes are extracted around the islands of connected pixels to
define source spatial boundaries. Bounding boxes around source candidates are used to extract dirty spectra
from the input dirty cube by summing, for each frequency slice (channel), all pixels within the bounding boxes.
Figures 20, 21, and 22 show, respectively, an example of an input integrated dirty cube containing 6 simulated
sources (green boxes) with two spatially blended sources, the target sky model image (green and red highlight
the target and the predicted bounding boxes), and the 2D prediction map (red bounding boxes).

5.3.2 DeepGRU

The obtained spectra are standardized and fed to DeepGRU (step 6 in Fig. 19) which is tasked to solve a
1D denoising problem and outputs 1D probabilistic maps of source emission lines which are then analyzed in
search for peaks. Each peak is fitted with a 1D Gaussian function. Position z and extension ∆z = 2 ∗FWHMz

(where FWHMz is the FWHM of the Gaussian peak) are recorded. Fig. 23 shows the dirty spectrum extracted
from the two blended sources shown in Fig. 22, and the DeepGRU’s predicted emission probability map. Blue
and red vertical bars limit the true and predicted, respectively, emission ranges of the two sources within the
spectrum. In order to detect possible false positives produced by Blobs Finder, all potential candidates showing
no meaningful peak in their spectra are removed. If more than one peak is found alongside the spectrum, three
possibilities may arise: detected peaks may indicate distinct celestial sources which are spatially blended,
detected peaks may belong to the same source, or one or more peaks are false detection(s). None of these
possibilities can be excluded a priori. On each peak we perform spectral focusing, i.e. we crop a 64× 64 pixel
image around the source center in the spatial plane and integrate within the peak extension in frequency. In
order to estimate the SNR of a source, two SNR measurements are accounted:

Global SNR:

SNR
def
=

median(xs(r))

var(xn(R− r))
(2)

where xs(r) are the pixel values of the source within a radius r inscribing the bounding box, and xn(R− r)
are the pixel values within an annulus of internal radius r and external radius R which has the same area
of the inscribed circumference;

Pixel SNR:
snr

def
=

xi

var(X)
(3)

where xi is the value of the given pixel, and var(X) is the variance computed on the full image.

The two SNR ratio measurements are used to distinguish falsely detected from true sources and to deblend
overlapping sources within a blob. Fig. 24 summarises the false positive detection pipeline. In case of not
blended detections, the process works as follow:

◦ if SNR ≥ 6 eq. (2) (empirical bright source SNR threshold) in the integrated dirty cube and the source is
not flagged for deblending, the detected source is focused;

◦ if SNR < 6 eq. (2) in the integrated dirty cube, the detected source goes through a check for focus:

■ if SNR eq. (2) increases, the source is kept;
■ otherwise the source is discarded as false positive.
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Figure 20: An example of Blobs Finder’s input 2D integrated dirty cube produced by integrating an input dirty cube over
the entire frequency range. Superimposed in green, are the target bounding boxes outlining the emissions of the 6 sources
present in the cube. The image contains an example of two spatially blended sources located around the centre of the
image, one is a bright point-like source, the other a fainter and diffuse source laying behind.



ESO Internal ALMA Development Study

ALMA2030: Interferometric Image Reconstruction
Page: 42

Figure 21: An example of Blobs Finder’s target 2D Sky Model image with the target bounding boxes highlighted in green
and the predicted bounding boxes extracted through the tresholding operation on Blobs Finder’s probabilistic output, high-
lighted in red. Predicted and true bounding box centers are also plotted as, respectively, red and green dots.
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Figure 22: An example of Blobs Finder’s output 2D probabilistic source detection map with the predicted bounding boxes
extracted through thresholding, highlighted in red.
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Figure 23: In blue the dirty spectrum extracted from the central source bounding box predicted by Blobs Finder (Fig. 21),
in dotted-red the DeepGRU’s prediction. Vertical blue bars delimit the true emission ranges, while red bars the predicted
emission ranges. A secondary fainter source emission peak is detected by DeepGRU and thus the source is flagged for
deblending.

This is the condition marked with 1 in Fig. 24. The latter case, in fact, could only happen if the source is
integrated outside its true emission peak, for example over a noise spike. If more than one peak is found in
the potential source spectrum, then there is a chance that multiple blended sources make the blob (detected
by Blobs Finder). In case of blended sources, the procedure for the identification of true sources proceed as
follows:

1. focusing on the highest peak (primary peak) by integrating within its extension allows for the SNR eq. (2)
calculation. The same logic described above is followed.

2. the snr measurement eq. (3) is used to identify the pixel with strongest intensity in the image p(x, y).
This reference pixel is used in the next phase of the deblending process.

3. secondary peaks not overlapping in frequency with the primary peak are analysed:

■ the snr measurements eq. (3) find the reference pixel in the image s(x, y).
■ friend of friends algorithm is used to link pixels around the new reference pixel in s(x, y) until a satu-

ration level is reached when calculating the SNR eq. (2) iteratively.
■ a bounding box is created to encompass all the selected pixels, and a [64, 64] pixel image is cropped

around the bounding box.

4. secondary peaks overlapping in frequency with the primary peak are inspected:

■ if the primary and secondary peaks coincide spatially (p(x, y) = s(x, y)), then the secondary peak is
discarded as a false detection (condition marked as 2 in Fig. 24).
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Figure 24: Schema of the False Positives detection and source deblending pipeline which constitutes step 9 in Fig. 19.
Numbers 1 and 2 show two possible conditions: a potential source being defined as false positive and discarded from
further analysis. The subscript FG (focused global) indicates that the Global SNR is measured on the focused source,
while L implies a (local) Pixel SNR measurement. Flagged expresses that multiple peaks are detected within the potential
source’s spectrum and thus the source is flagged for deblending.

∗ e.g. DeepGRU may predict a single peak as two separate peaks or Blobs Finder predicts a single
true source as two very close blobs.

■ if p(x, y) = s(x, y) but SNR eq. (2) increases : the secondary peak is deemed as part of the primary
source and the source emission range is extended accordingly.

∗ it may happen if DeepGRU overpredicts the true emission range.

Finally all spectrally focused sources with SNR lower than 1 eq. (2) are flagged and removed.
Fig. 25 gives an example of Spectral Focusing applied to the potential sources detected by Blobs Finder

and DeepGRU in the test cube already displayed in Fig. 20. By focusing on the two peaks detected by the
DeepGRU Fig. 23, the two blended sources produce two different images (Focused Source 0 and 1) which can
be analysed independently.
An additional advantage of focusing is the improved dynamic range of the detected signal with respect to the
registered one in the reference dirty integrated image.



ESO Internal ALMA Development Study

ALMA2030: Interferometric Image Reconstruction
Page: 46

Figure 25: An example of source spectral focusing of sources within a test set image. On the Left, as reference, we plot
the dirty integrated cube with the predicted 2D bounding boxes obtained by Blobs Finder highlighted in different colours.
The legend matches the source number to the bounding box colour in the image and the measured Global SNR eq. (2).
On the right, there are the 6 Spectrally Focused images obtained by integrating over the predicted line extensions found by
DeepGRU and cropping a [64, 64] pixel image around Blobs Finder’s predicted bounding boxes centres. In each focused
image it is also showcased the measured Global SNR. A substantial increase in SNR occurs when sources are focused
around their actual emission ranges.
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Generalization to more complex spectral profiles: DeepGRU makes the assumption that emission lines
are mostly consisting of a single Gaussian. This simple approximation is valid for a large fraction of ALMA
targets, but there are other sources with complex velocity structures such as lopsided gas distributions in
galaxies, combinations of Giant Molecular Clouds, etc. In order to generalize the treatment to cover more
complex spectral profiles, improved simulations are needed to train the model. DL models often struggle to
generalize beyond the scope of their training datasets. To achieve robust detection of more complex emissions,
our primary goal is to enhance the quality of the simulations. This, however, demands significant effort and
a substantial investment of human power. The improvement of the simulation has been planned as follow: 1.
Employment of multiple ALMA array configurations and observational parameters to address QSO simulations
and, e.g. through the collaboration with the SKA Source Finding Focus group, complex morphologies of ellipti-
cal and spiral galaxies are generated through physics based modelling. Other objects with complex structures
(for instance gas distributions, molecular clouds) and multiple spectral lines are accounted in a second step in
the simulations; 2. Recover a targeted and comprehensive selection of simulated ALMA observations of inter-
esting objects. Real data and simulated data will be labelled as True and False and a Generative Adversarial
Network will be tasked to modify the simulated images until they cannot be discerned anymore from the real
data. This will allow us to generate truly realistic moc data on which to re-train our pipeline. See Section 6 for
more details.

5.3.3 ResNets

Prediction of morphological parameters of the detected sources (FWHM, coordinates x and y, projection an-
gle pa) is performed by ResNets (stage 10 in Fig. 19). Celestial coordinates are computed as photometric
baricenters (pixel-weighted centers) of the Blobs Finder predicted bounding box. Source fitting in spatial and
frequency domains are combined to create a 3D Gaussian profile.
A 3D segmentation map is created. The segmentation map is dilated by a factor of 1.5 to account for the
convolution process spreading the continuum and the line emission signals in the image. This is performed to
make sure that all the source signal is contained within the 3D segmentation map. A dilated 3D segmentation
mask is used to create the model-masked cube by multiplying it with the dirty cube. The inverse mask is in-
stead used to capture the continuum cube. The continuum image is created by averaging the continuum cube
in frequency. The line emission cube is created through the following formula:

Lz[x, y] = Mz[x, y]− f(z) ∗ C[x, y] with z ∈ ∆z (4)

where Lz[x, y] is the 2D line emission image at slice z, Mz[x, y] is the model masked 2D image at slice z,
C[x, y] is the continuum image and f(z) is the 1D continuum model. The line emission cube is integrated along
the frequency to create the line emission image which is fed to a specialized ResNet predicting the source flux
density in mJy/beam.

In summary, ResNets allow us to estimate morphological parameters of the detected sources, measure
their continuum and the line emission in addition to create the reconstructed cubes. Please note that in case
of overlapping/blended sources, the fitting of the morphological parameters is executed simultaneously. Each
detected source (primary or discovered seconday source) is fed to the ResNet to regress the source morpho-
logical parameters. The characterization is thus performed simultaneously and no information about the two
sources, or any previous source seen in inference, is employed to predict the source parameters.

5.4 Train, Test, Validation

The 5000 simulated ALMA Dirty cubes (described in Subsec. 5.2) are grouped in sets and a split ratio of
60-20-20 to train, test and validate is employed.

◦ The training set is used to train the DL models within the pipeline.
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◦ The test set is used to measure the pipeline performances in detecting sources and in regressing their
parameters.

◦ The validation set is used to measure the training progress and assess generalization capabilities.

5.4.1 Training and Validation

The training allows the model to initially learn a median representation of the data (which should capture
information about the dirty beam and noise patterns), and then refine its understanding to account for nuances
in the data, such as source positions and morphological properties (e.g., the shapes and sizes of galaxies).
Details on the training strategies can be found in Subsec. 4.5 of [2]. For more information, refer to this link.

At first, training occurs in parallel on the whole pipeline starting from pairs of dirty input images (dirty
cubes integrated along the frequency) and target sky model images (target sky model cubes integrated along
the frequency) with the Blobs Finder model. DeepGRU is trained on pairs of dirty spectra (extracted from the
dirty cubes) and clean spectra (extracted from the sky model cubes). The DeepGRU predictions are used in
combination with Blobs Finder’s predictions to extract the spectrally focused galaxy images. Targets for training
are the simulated source parameters. The three ResNets for morphological parameters estimation are trained
simultaneously. In the first training iterations, care is taken in DL model to prevent overfitting. Successively,
each model is trained independently on the un-augmented training set predictions of the previous model. In
this way, each model corrects for biases introduced by the previous one.
Validation is used to fine tune the training stage. Sec. 4 of [2] provides the description of the validation loss
implemented in the algorithm.

5.4.2 Testing: Accuracy evaluation of detected sources after training

The test set is used to evaluate whether the algorithm can generalize well to an unseen dataset (i.e., the 1000
ALMA simulated cubes). The detection capabilities of Blobs Finder and DeepGRU are evaluated by quanti-
fying the overlap between the Ground Truth and the predicted region, using the Intersection over Union (IoU)
metric. For Blobs Finder, the 2D IoU between the true 2D bounding box and the predicted one is measured.
For DeepGRU, the 1D IoU is measured between the true emission ranges and the detected ones. At least
60% of the 3D emission range of a source must be captured for it to be classified as a true positive (TP). A
threshold of 0.6 IoU is chosen to ensure that 90% of the true emission range is captured within the predicted
region, given that the line emission image is created using a dilated segmentation mask.

Blobs Finder succeeds with an 89% efficiency and a 0.1% contamination. Spectra from the detected dirty
cubes are extracted and fed to DeepGRU, that provides a 99% efficiency and a 0.02% contamination. Sources
are “spectrally focused” within the predicted frequency emission ranges ∆z, and SNR checks are made. It
allows to further investigate false (FP) and true positives. The full logic of the FP removal process is shown in
Fig. 24. Blobs Finder’s false detection is eliminated by DeepGRU, as described in conditions 1 and 2. Figs. 26
and 27 show some examples of Blobs Finder predictions on the test set. For each block, the upper, middle
and bottom rows show the input integrated dirty cubes, the target sky models, and Blobs Finder predictions,
respectively.

The clean peaks found by DeepGRU are characterized by the ResNets. Fig. 18 of [2] shows the scatter
plots of the true parameters versus the predicted ones and the corresponding residuals histograms. The vast
majority of residuals lies within ±1σ, indicating that the process is perfectly under control.

Last, DeepFocus is shown to obtain better results than other ML techniques when applied on the same test
data set. Please refer to Sec. 5 of [2] for more details.

https://academic.oup.com/mnras/article/518/3/3407/6825518?login=true
https://academic.oup.com/mnras/article/518/3/3407/6825518?login=true
https://academic.oup.com/mnras/article/518/3/3407/6825518?login=true
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Figure 26: Examples of Blobs Finder predictions on the test set. The first row shows input integrated dirty cubes, the middle
row shows the target sky models, and the bottom row shows Blobs Finder predicted 2D Source Probability maps. Green
outlines (in the dirty and sky model images) indicate true bounding boxes, while red outlines show predicted bounding
boxes extracted by thresholding the probability maps.
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Figure 27: Examples of Blobs Finder predictions on the Test Set. The first row shows input integrated dirty cubes, the
middle row the target sky models, and the bottom row, Blobs Finder predicted 2D Source Probability maps. In green are
outlined (in the dirty and sky models images) the true bounding boxes, while in red the predicted bounding boxes extracted
by thresholding the probability maps.
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5.5 Comparison with tCLEAN and speed-up estimation

5.5.1 Application of Simulated Data for Comparative Analysis

Preliminary results on comparing the capabilities of DeepFocus with respect to tCLEAN on a sample of 1000
simulated ALMA cubes (256x256x128) are provided. In Fig. 28 part of the sample is shown with the first
and second columns representing a sample of the integrated ALMA cubes and sky models. The third column
shows the solution provided by DeepFocus. tCLEAN solution run with 200 cleaning iterations is given in the last
column. Both algorithms are capable to find all sources in this sample. Residuals are measured to compare
the true sky model reconstruction performance of the two algorithms: Blobs Finder’s residuals are within ±1σ,
while for tCLEAN the residuals are deviating above the ±5σ threshold.

The measured residuals will certainly decrease while increasing the number of cleaning iterations within
tCLEAN, but to the detriment of the computational cost. Employing the sample of 1000 ALMA cubes, we can
compare the computational cost of the two algorithms when using 200 cleaning iterations for tCLEAN:

■ Blobs Finder made its predictions on the entire Test set in 23 seconds employing a single NVIDIA
Tesla K20.

■ tCLEAN took 4.3 minutes per cube utilising 8 Intel Xeon E5-2680 CPUs. Given the 400 CPUs at our
disposal, we run it on 50 cubes at a time in parallel obtaining a total computational time of 1.5 hours.

Employing BlobsFinder for the reconstruction task on the entire Test set results in a speed-up factor of
200 on our system with respect to tCLEAN. If we consider the possibility to accommodate DeepFocus within
tCLEAN, if we account for the major cycle procedure execution time, this workout will provide an improvement
in speeding up the CASA procedures of at least a factor of 150.

We are aware that the promising speed up in the procedures when employing DeepFocus within tCLEAN

will not solve unfortunately the performance problem of the Wideband Sensitivity Upgrade [3] alone. However,
it will make a huge contribution. In order to succeed for the ALMA2030 era, we want generalize our algorithm
to perform a whole deconvolution process independently to tCLEAN. The pathway to implementing DeepFocus

independently of tCLEAN and CASA is well-defined. However, securing the necessary funding is essential to hire
the appropriate personnel for its successful execution.

Note on Speed Calculation and Sustainability: We plan to measure the execution speed of DeepFocus and
tCLEAN in a setting suited for ALMA operations. We will also estimate and compare the associated costs.
So far, the speed comparison has been based only on prediction time. The total pipeline training time for
DeepFocus was approximately 5 hours, while tCLEAN took around 1.5 hours (as tCLEAN does not require training
time). However, this training time is a one-time investment when DeepFocus is used within the CASA framework.
DeepFocus can be shared as a Python script along with a series of weight files (similar to pre-trained networks
shared by Google, PyTorch, etc.), allowing the community to benefit from an active learning paradigm, where
the model is periodically retrained on new and improved data to provide optimal performance.
DeepFocus operates on graphics processing units (GPUs) rather than central processing units (CPUs), poten-
tially reducing long-term operational costs compared to using multiple CPUs. Infact, assuming we are buying
hardware at the time of writing this document, a Intel Xeon or AMD EPY with 26 cores costs around 2000
euros. To reach the 400 cores employed in our computations, 16 of these must be clustered with a conser-
vative estimated cost between 30,000 and 32,000 euros. A single NVIDIA A100 GPU costs between 10,000
and 12,000 euros. This is cheaper than setting up 400 CPU cores using high-performance CPUs, by roughly
a factor of 3 which means that the computed speed-up factor, if price of hardware is accounted for, can be
further augmented by this factor.
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Figure 28: Comparison of DeepFocus and tCLEAN on a set of 1000 simulated ALMA cubes. In the images, the first, second,
third and fourth columns shows a sample of Dirty Images, target Sky Models, Blobs Finder’s reconstruction and tCLEAN

reconstructions with niter = 200.
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Figure 29: Comparison of processing time and computing throughput with DeepFocus and tCLEAN on 29 × 103 archived
cube data from cycles 7, 8, and 9. This represents a rough estimate because at this stage of development, it is challenging
to make a robust comparison between the two techniques.

5.5.2 Execution Speed Analysis on Archived ALMA Data Cubes

The European ALMA Regional Centre (EU ARC) cluster is regularly employed for processing the standard
pipeline and generating official products delivered to principal investigators. Utilizing the EU ARC cluster,
DeepFocus was executed on 29×103 archived ALMA data cubes collected during the three most recent obser-
vation cycles (Cycles 7–9; see Fig. 29).
For this experiment, DeepFocus was trained and tested primarily on simulated data, with limited use of real
sources. At the time of its development, using only real data was not feasible due to the reliance on supervised
learning methods and the ALMA archive’s limitations in efficiently providing large volumes of data. Retrieving
sufficient real data would require thousands of requests via the helpdesk and extensive processing with CASA,
averaging 1–2 hours per cube, rendering the process impractical. Moreover, training directly on real data could
introduce challenges due to uncertainties inherent in the data. Future integration with ALMASim aims to ad-
dress these issues by enabling faster simulation generation and more efficient data retrieval from the ALMA
archive. Additionally, no DeepFocus outputs on real data were recorded during this experiment. However, this
will become feasible once ALMASim is fully developed and operational.

DeepFocus’s average processing time per cube was 1.13 minutes, with a compute throughput of 140 MB/s.
For comparison, the same dataset was processed using the tCLEAN algorithm [12], [11], with parameters set to
niter=1000, corresponding to 1000 cleaning iterations, and parallel computing enabled. The average compute
throughput with tCLEAN was 0.56 MB/s, resulting in a performance rate approximately 250 times lower than
that achieved by the DeepFocus ML algorithm.

The speed improvement offered by DeepFocus varied depending on the image size, with speedups ranging
from 280-fold to an exceptional 5500-fold increase. When using advanced algorithms like DeepFocus, the
image deconvolution process can be completed within minutes, even for large data cubes. The use of GPUs,
commonly employed in ML algorithms, provides significant benefits for synthesis image analysis. DeepFocus

demonstrated both high image fidelity and impressive computational performance in reconstructing images
from ALMA data cubes.

5.6 Bayesian Optimization and Meta–Learning for DeepFocus Model Selection

The DeepFocus deep learning pipeline [2] performs deconvolution, source detection, and characterization.
Originally developed to detect faint compact objects Figs. 19, 30, the algorithm has been enhanced to detect
extended emissions through the integration of a new ML model: The meta–learner Fig. 31. This meta-learner
explores various architectures (e.g., CAE-VAE, U-Net, and ResNet) and aids in selecting the best-performing
model for a given task and set of interferometric data. A Bayesian optimization algorithm is employed for model
selection, supported by a taxonomy that incorporates multiple architectures, hyperparameters, and evaluation
metrics specific to the problem, data, and desired performance criteria.
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Figure 30: An autoencoder is a type of neural network architecture that uses an encoder (right) to compress an input into
a lower-dimensional representation (center), and a decoder (left) to reconstruct the original input from the compressed
representation.

Figure 31: The deconvolver DeepFocus is a meta–learner that searches for the most performing architecture given a task
and a set of interferometric data.
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Figure 32: Schematic view of the described software components interacting with radio-interferometric Science Archives.
DeepFocus and ALMASim are flexible to be extended to other observatories.

During optimization, multiple parameter realizations are tested in parallel on subsamples of the data to
measure performance. Once the optimal architecture is identified, the pipeline handles tasks such as decon-
volution, denoising, focusing, and classification.

The Bayesian optimization algorithm efficiently identifies the best set of parameters by reducing the num-
ber of expensive model evaluations through the use of surrogate models. The deep learning model (the
objective function) is approximated by a Gaussian process (GP) surrogate, where y = GP (µ,Σ), with µ(x)
and Σ(x, x′) representing the mean and covariance functions, respectively. A Matérn kernel is used for the

covariance function to capture smoothness and correlations, defined as Σ = K(x, x′) = σ2
(
1 + (x−x′)2

2αl

)−α

where α and l are smoothness and length scale parameters.
The surrogate model is trained on a limited number of initial objective function evaluations. An acquisition

function, in this case, the expected improvement (EI), guides the selection of the next parameter set to evaluate.
The EI function is defined as EI(x) = E [max (f(x)− f(x′), 0)], where f(x) and f(x′) represent the predicted
mean of the objective function and the best value observed so far. This approach balances exploration, favoring
high uncertainty σ(x) and exploitation, preferring values where µ > f(x′). As demonstrated in [86], surrogate
models significantly reduce the number of costly objective function evaluations during Bayesian parameter
optimization.

In summary, for a given dirty data cube, DeepFocus employs a taxonomy-based approach to identify the
most suitable models for the specific dataset. The process begins with deconvolution and denoising to enhance
the data quality. Following these steps, the algorithm performs focusing, regression, and classification to extract
and characterize the relevant features from the data.

5.7 Summary and Outlook

DeepFocus offers efficient cube imaging, source extraction, and characterization for large datasets with minimal
impact on data storage, thanks to its Meta-Learner that optimizes deep learning architectures. It has shown
remarkable performance improvements through advancements in data loading, parallel processing, and GPU
usage.

Although ALMA2030 [3] is still in early stages, DeepFocus is expected to have significant applications both
within and outside ALMA operations. It could enable real-time processing and provide comprehensive imaging
of all requested spectral windows without the need for traditional mitigation processes. Nevertheless Deep
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Focus was only trained and tested on cubes containing at least a source, the classification part of its pipeline
works on cube patches which may contain no source at all. This means that the application of Deep Focus on
data cubes with no source inside should not generate false positives. To prove this, further experiments will be
conducted leveraging ALMASim’s capabilities of generating simulations without a source. Furthermore we are
studying the possibility of using simulations with no source to study to characterize the noise properties of the
simulations. DeepFocus can be integrated into the next generation of CASA as a deconvolution task or used as
a standalone tool by any interested users or Principal Investigators. As shown in Fig. 32, DeepFocus can be
advanced to learn from freshly archived data. For this purpose, DeepFocus will be trained as the archive gets
updated. ALMASim, in conjunction with real data, serves as a crucial link for the scientific community, facilitating
the development and evaluation of innovative ML techniques. It enables comprehensive quality assessment
by allowing researchers to regenerate simulated data for comparative analysis. This capability ensures that
results obtained with simulated data by one group can be replicated and compared with results from other
techniques by different researchers. Both real and mock data are processed by DeepFocus to generate clean
outputs and produce catalogs of detected sources.
Regarding the application of Deep Focus on complex line shapes, we haven’t tested the capabilities of Deep-
GRU in reconstructing complex spectral profiles. The use case was never tested. That being said, DeepGRU
was only one of the models explored in the taxonomy of models tested by DeepFocus. When Deep Focus
will be applied to complex line profiles, a different model (more modern) could rise up to be the one suited
to handle them. Regarding Deep Focus training and testing on simulated sources only. Employing real data
for training was not feasible at the time of development of Deep Focus given that most algorithms at the time
worked in a supervised fashion and given hat the ALMA archive does not offer a service to obtain the volume of
needed data in reasonable time. Even if a user is capable of producing the thousands of data requests needed
to gather enough trianing data, this data must be processed with CASA (to be employed for ML) which takes
on our experience between 1 and 2 hours per cube. This would end up in an unreasonable time to obtain a
meaningfully training set. Furthermore, the direct employment of real data for training could be a double-edged
sword given the uncertainty on the data itself. Through ALMASim in the future we will be able to hopefully
cover both the fast generation of simulations and the fast retrieval of real data from the archive.

The application on complex morphological profiles to address the detection of extended emissions has
encountered several challenges, primarily due to the current limitations in ML techniques within our community.
Large-scale applications of ML methods are constrained by several factors:

1. Simulation Complexities: Existing tools for generating simulations are inadequate for producing realistic
observational signatures and often struggle to generalize to real-world scenarios. These tools are fre-
quently proprietary, limiting access and collaboration among users. Additionally, the simulated data often
come with incomplete metadata and lack a user-friendly interface, requiring significant time investment
from experts, especially when thousands of simulations are needed for ML applications.

2. Availability and Structure: Simulators are typically not designed to support extensive and varied use
cases, leading to a narrow focus that does not accommodate the broader needs of ML applications. This
limitation exacerbates the difficulty in adapting simulations for diverse scenarios.

3. Fallback Issues: The absence of standardized benchmarks and the tendency for scientists to conduct
independent efforts in both simulations and ML applications contribute to the fragmentation of research.
This lack of common benchmarks impedes the comparison and validation of different techniques and
results.

Consequently, our efforts have been concentrated on advancing ALMASim. Detailed information on the
enhancements made to ALMASim, including the integration of a graphical user interface (GUI) and improvements
to its accessibility for the scientific community, is provided in Section 6. ALMASim generates spectral profiles
for various source classes, simulating luminosity functions for 180 species commonly observed in ALMA data,



ESO Internal ALMA Development Study

ALMA2030: Interferometric Image Reconstruction
Page: 57

such as the CO (2–1) transition, enhancing the quality of our simulations. To refine the characterization of noise
in images and facilitate effective learning by ML algorithms, the empirical noise study has played a pivotal role
in our BRAIN initiative. The prototype version of NOISEMPIRE has been incorporated into ALMASim, with further
details available in Section 7. Additionally, synergies among core team members have led to the integration of
NIFTy into ALMASim. These advancements have been essential and have demanded a considerable amount of
dedication and effort.

An archived ALMA QSO sample is prepared for input into the DeepFocus algorithm to search for faint
serendipitous galaxies. While improving the detection of faint objects, efforts will focus on enhancing the
algorithm’s robustness. Previous work with datasets like SKA Data Challenge 2 and Westerbork Synthesis
Radio Telescope data suggests that false detections, common with methods like Deep GRU and Blobs Finder,
can be mitigated by post-detection classifiers. ResNets and Random Forests have already proven effective for
this task.

Tests will verify the algorithm’s ability to detect off-axis sources across channels, including extreme cases.
Larger data cubes will be created and tested to address challenges posed by upcoming ALMA upgrades. The
method will also be trained to detect continuum in continuum imaging and isolate noise in cubes and continuum
images.

We want to refine the simulations employing physical models for the galaxy kinematics. Refinements on
the simulation code and detection algorithm are also needed to detect other complex and reach environments
as when observing the galactic center or the SZ effect for decrement features.
Because of the several and complex celestial radio sources detectable with ALMA, the algorithm shall be
expanded to allow for transfer learning. For instance, domain adaptation will allow the algorithm’s ability to
learn from both artificial and real data. The basis of this development are important in operations in view of
ALMA2030 [3].

6 ALMASim

ALMASim [87] is an open source simulator developed in Python and distributed through GitHub and PiP which
aims to provide a reliable and user-friendly tool for generating realistic ALMA mock data based on real metadata
from the ALMA TAP archive. Designed for both astronomers and computer scientists, ALMASim offers flexibility
in its usage. Users can opt for a fully automated mode, requiring no prior knowledge of radio interferometry,
or can customise simulations for specific ALMA sources and observing conditions. ALMASim is adaptable
to various computational environments, working either on laptops and high-performance computing (HPC)
clusters. It supports sequential execution for resource-constrained scenarios and leverages MPI programming
for efficient parallel processing to generate large volumes of simulated data rapidly. The ALMASim Graphical
User Interface, shown in Fig. 33, allows the user to setup and customize the simulation on a local machine or
on a remote High Performance Cluster leveraging one of three possible schedulers: Dask, Slurm or MPI. The
ALMASim simulation pipeline can be divided into five main phases:

1. Simulation Setup: In this phase, the user provides information about the desired simulations, including
the number of simulations, the types of sources to simulate (sources skymodels), and the observing
conditions.

2. Metadata Retrieval: Based on user preferences, observational metadata is retrieved from the ALMA TAP
archive. This can be done by specifying a list of known targets or by using keywords available in the ALMA
Archive such as scientific category, observing band, or field of view. For each target arising from the
SQL query the following information are recorded: Band, PWV, RA, DEC, Int Time, Cont Sens, Angular
Resolution, Bandwidth, Frequency of observation, Frequency Support (all SPWs) and the antenna array

3. Source Reasoning: The retrieved metadata is then used to calculate relevant information for the simula-
tions, such as the expected radio continuum brightness, the types of spectral lines expected in the given

https://www.eso.org/sci/facilities/alma/developmentstudies/ALMA2030-Reports.pdf
https://github.com/MicheleDelliVeneri/ALMASim
https://pypi.org/project/almasim/
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Figure 33: The ALMASim Graphical User Interface.

band, their fluxes, velocities, redshifts, and signal-to-noise ratios (SNR). This allows for the simulation of
skymodels which have similar characteristics to those of the corresponding real observations.

4. Sky Model Simulations: Using the source information, the incoming signals are simulated in a noiseless
environment, creating ”Sky Models.” ALMASim currently supports Point, Gaussian, Extended, and Diffuse
sky models. Extended sky models are generated by incorporating Illustris TNG [21] [88], Galaxy Zoo [89]
or Hubble [90] images into the data cubes.

5. ALMA Simulation: The collected metadata and the generated Sky Models are fed in input into a radio-
interferometric simulator to produce a realistic observation of the Sky Model. The observational char-
acteristics such as the antenna configuration, the beam size, the integration time, the field of view, the
continuum sensitivity and so forth are derived from the corresponding real observation metadata. The
resulting observed cube (Dirty Cube), the dirty visibilities, and model visibilities (Fourier inversions of the
Dirty and Sky Model cubes, respectively) are then, if possible, compared with the real counterpart to
check for errors and saved on disk.

The relevant parameters for the simulation setup are the followings:

1. Output Directory: a text field and a browse button to specify and select the directory where the simula-
tion results will be saved.

2. TNG Directory: a text field and a browse button to specify and select the directory where the Illustris
TNG [21] data will be downloaded (if needed).

3. Galaxy Zoo Directory: A text field and a browse button to specify and select the directory where Galaxy
Zoo data will be downloaded (if needed).
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4. Hubble Top 100 Directory: A text field and a browse button to specify and select the directory where
Hubble data will be downloaded (if needed).

5. Email: a text field for the user email address. The email address is used to notify the user of the
completion of the simulation if they are run on a remote machine.

6. Project Name: a text field to enter the name of the simulation project. This will be a sub-directory created
within the Output Directory where all the data products will be stored. If this field is left empty, data will
be stored in the Output Directory.

7. Number of Simulations: a text field to enter the number of simulations to run.

8. Total Number of CPUs: a text field to enter the total number of CPU cores involved in the simulations.

9. Save Format: A drop-down menu to select the format in which to save the simulation results. The
supported formats are .fits, .npz and .h5.

10. Computation Mode: a drop-down menu to select the computation mode. Allowed modes are sequential
and parallel. In sequential mode, simulations are run sequentially using the total number of selected
CPUs, while in parallel mode the Dask [91] is used to parallelise over multiple CPUs.

11. Remote Mode: a drop-down menu to select if the simulations have to be run on the local machine or
remotely. In the latter case, the following additional fields are presented to the user:

(a) Remote Computational Mode: a drop-down menu showing three possible configurations: MPI,
Slurm and PBS. If MPI is selected, then a Dask cluster is created on the remote machine and
used to perform the simulations in parallel over the selected amount of CPUs. If Slurm is selected,
a Dask SlurmCluster is created on the remote machine and used to perform the simulations. A
Dask SlurmCluster is a tool that bridges the Dask parallel computing library with Slurm [92], a
workload manager commonly used on high-performance computing (HPC) cluster, and allows to
directly leverage the resources managed by Slurm. If PBS is selected, Dask interfaces itself with
the Portable Batch System (PBS) workload manager on the remote machine;

(b) Remote Host: the host-name or IP address of the remote machine;
(c) MPI/Slurm/PBS Config: a .json file containing information about the cluster, such as FQDN of the

scheduler, ports and available resources;
(d) Username: the user name on the remote machine;
(e) SSH Key: the SSH key to connect to the remote machine with password-less ssh;
(f) Key Password: the password for decrypting the SSH Key (if needed);

(g) Set Work Directory: a checkbox to control whether the simulations and all the necessary ancillary
files should be stored in the user remote home folder or in a different working directory. If the
checkbox is ticked, the user is asked for the full path of the working directory on the remote machine.

12. Line Mode: a checkbox to enable or disable line mode. If line mode is enabled, a list of 108 lines is
displayed, and the user is asked to select which lines to simulate. If the line mode is disabled, the user is
asked for the redshift distribution of the simulated observations, and the number of lines that should fall
in the observation spectral window (e.g. the frequency range observed by ALMA).

13. Min/Max Line Widths in km/s: two sliders controlling the minimum and maximum widths in km/s of the
simulated emission lines.

14. Brigg’s Robustness Parameter: a slider which allows to set the Brigg’s robustness parameter for UV
coordinates weighting.
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15. Set SNR: a checkbox to control the Signal to Noise Ratio (SNR) of the simulated observations. If set, the
user is asked to insert the SNR distribution of the simulated sources. If not set, the SNR is set randomly,
but always higher than the expected ALMA sensitivity (e.g. all simulated sources should be detectable).

16. Set IR Luminosity: a checkbox to control the infrared luminosity normalisation. If set, the user is asked
to insert the infrared luminosity to which the theoretical Spectral Energy Distribution (SED) is normalised
to. If not set, the SNR is scaled to the infrared luminosity such that the minimum observed continuum is
higher than the minimum continuum observable with the chosen ALMA configuration.

17. Fix Spatial and Spectral Dims: the two check-boxes control the size in pixels of the output data products.
If set, the user is asked to insert the desired number of pixels and channels. If not set, the number of
pixels are directly computed from the band and field of view sampled from the metadata.

18. Inject Serendipitous: a checkbox to control the injection of serendipitous sources. If set, a random
number between 1 and 5 Gaussian sources are injected alongside the selected source model within the
sky model cube. Each serendipitous source is simulated with the same line configuration as the central
source, but with a lower SNR.

19. Select Skymodel: a drop-down menu to select the model to use. Seven source models are available,
Point, Gaussian, Extended, Diffuse, Galaxy Zoo, Hubble and Molecular. The Point model is built by
injecting a dot at a specific position (x, y, z) in the cube. The Gaussian model by injecting a 2D Gaussian
Kernel at a specific position (x, y, z, FWHM x, FWHM y, pa) where FWHM x, FWHM y are the Full Width
Half Maximums of the Gaussian Kernel in the x and y axes, and pa is the projection angle with respect
to the line of sight. The Extended model is built by searching TNG snapshots (dictated by the desired
redshift) for a compatible gas halo, and injecting it within the cube at a specific position (x, y, z). The
Diffuse model is generated by injecting a 2D correlation random field (CRF) in each 2D plane of the
cube. The CRF is created using a power spectrum based approach in which, first, a random correlation
field is generated using [93], and then an exponential function is applied to it in order to ensure positivity
and non-Gaussianity in the field. The Galaxy Zoo model is built by randomly sampling a Galaxy Zoo
image and injecting it in all 2D planes of the cube. The resulting cubes are normalised, channel by
channel, to the expected continuum and then convolved with 1D Gaussian Kernels (L, z, FWHM z) to
obtain the line emissions, where L is the line luminosity, and FWHM z is the width of the line in number
of channels. The Hubble model is built by randomly sampling an Hubble Top 100 image and injecting it
in all 2D planes of the cube. The resulting cubes are normalised, channel by channel, to the expected
continuum and then convolved with 1D Gaussian Kernels (L, z, FWHM z) to obtain the line emissions,
where L is the line luminosity, and FWHM z is the width of the line in number of channels. The Molecular
Cloud model is built by generating a 2D power-law image with a specified index and random phases and
injecting it in all 2D planes of the cube. The resulting cubes are normalised, channel by channel, to the
expected continuum and then convolved with 1D Gaussian Kernels (L, z, FWHM z) to obtain the line
emissions, where L is the line luminosity, and FWHM z is the width of the line in number of channels.

20. Metadata Retrieval Mode: a drop-down menu to select the metadata retrieval mode. Two modes are
available, query and get. If the query mode is selected, the ALMA Archive TAP Interfaces (EU, NA, EA)
are queried for metadata on the basis of a list of targets or through a Scientific query (see Query Type
below). If get is selected, the user is asked to select the file where metadata are stored on disk.

21. Query Type: a drop-down menu to select the scientific query mode. If science is selected a query is
performed on the ALMA Archive on the basis of the following user choices: scientific category, science
keyword, band, frequency of observation, integration time. If target is selected, the user is asked to point
to a file containing the list of target names and ALMA archive identifiers (group ID and member ID), which
are used to query the ALMA archive for relevant metadata.
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Figure 34: Simulation of a Point Source with ALMASim.

22. Save/Load Metadata: a text field and a browse button to specify and select the file where the queried
metadata will be saved to (query mode) or loaded from (get mode).

Fig. 34, 35, 36, 37, 38, 39 show an example for each sky model that can be simulated with ALMASim. Efforts
has still to be made in order to expand the simulator to employ radio catalogues as Radio Galaxy Zoo [94],
VLA surveys (VLASS [95], FIRST [96]), Lofar surveys (LoTTS [97], MMSS [98]). This development is out of
the scope of this study, but we are eager to address this topic in the future.

6.1 Simulating QSOs from the ALMA Archive

To generate realistic Quasi Stellar Objects (QSOs) luminosities and spectral profiles, ALMASim employes a
Spectral Energy Distributions (SED), to generate the continuum, and a database of 110 line ratios to compute
the line fluxes. The SED are produced by [99] through a “hybrid” model that combines a physical, forward
model for proto-spheroidal galaxies with a phenomenological model for late-type galaxies. The authors use
multi-wavelength data (from mid-infrared to millimeter waves) and introduce an evolving luminosity function
for both AGNs and their host galaxies. The SED are normalized so that the IR luminosity, i.e. the integrated
luminosity between 8 and 1000 µm, is 1 L⊙. The two SEDs, normalized to 1010L⊙ and shifted to redshift
0.05 are shown in Fig. 40. The database of line ratios is produced by Spilker et al. 2014 [100] which derived
the average composite spectrum of a Dusty Star Forming Galaxy (DSFG) by combining the spectra of 22
DSFG observed by ALMA through a stacking method. The sources are shifted to the same redshift, z = 3,
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Figure 35: Simulation of a Gaussian Source with multiple serendipitous sources with ALMASim.
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Figure 36: Simulation of a Diffuse Field with ALMASim.
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Figure 37: Simulation of a Hubble Top 100 Source with ALMASim.
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Figure 38: Simulation of a Molecular Cloud with ALMASim.
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Figure 39: Simulation of a Galaxy Zoo Galaxy with ALMASim.
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Figure 40: The two Spectral Energy Distribution employed by ALMASim to simulate source continuum

and rescaled to the same apparent infrared luminosity of 1013 solar luminosities. By analyzing the composite
spectrum, several molecular lines were detected, such as 12CO, 13CO, HCN, HNC, HCO+, CN, even when
not all transitions were individually visible in the individual spectra. Knowing the SED luminosity values of the
AGN, and in particular their infrared luminosity, it is possible to trace the luminosity emitted by the different
spectral lines through the relationship between the latter and the former via the parameter c, defined as the
ratio between the line luminosity and a given infrared luminosity. Assuming that a line and an IR Luminosity are
chosen, the SED is shifted in redshift such that the line falls within the SED, and the line fluxes are computed
as follows:

logLline = logLIR + c (5)

where:

Lline is the line luminosity integrated over the frequency step (or line width) in unit of Solar luminosity L⊙,

LIR is the infrared continuum in L⊙ scale.

c the ratio between the line luminosity and a given infrared luminosity.

Since the given SEDs are not provided in Jy, but in erg/s/Hz, the relation used to convert them is :

L[Jy] = L[erg/s/Hz]× 1023

4πD2
L[cm]

(6)

The SEDs are re-normalized to the chosen infrared luminosity and line fluxes are computed as follows:

Lline =
10log(LIR)+c

νstep
(7)

where νstep are the line widths in Hz.

νstep =
∆v

c
νrest (8)
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To assess the correctness of our method, we simulated the CO(1-0) transition line for a galaxy with a
Infrared Luminosity of LIR = 5.0 × 1013, and compared the results with those obtained empirically by [101].
Kirkpatrick et al. 2019 analysed the CO line emissions for a heterogeneous sample of galaxies distributed
over a redshift range of 0.01 to 4. For the sake of comparison, we fixed a line width of 300km/s and changed
the redshift between 0 and 5 and converted the luminosities computed by Kirkpatrick et al. in Jy through the
following equation [102]:

L′
CO =

c2

2kB
Sline∆v

D2
L

ν2obs(1 + z)3
(9)

c is the velocity of the light

kB is the Boltzmann constant

Sline∆v is the measured flux of the line in Jy km s−1

DL is the luminosity distance in Mpc

νobs is the observed frequency.

that can be reorganized as

L′
line = 3.25× 107 × Sline∆v

D2
L

(1 + z3)ν2obs
(10)

Fig. 41 shows the line luminosities obtained from ALMASim employing the SED and the line ratios (blue)
and those measured by Kirkpatrick et al. (red). The plot shows that the values produced by ALMASim are
compatible with those measured by Kirkpatrick. A sample of 31 QSOs observed by ALMA in band 3, 4, 6,
7 and 8 was chosen as a test set to compare in detail ALMASim simulations and real observations. To that
end, the QSOs Calibrated Visibilities were downloaded from the ALMA Archive and processed with CASA

tCLEAN with 0 iterations to produce dirty cubes. ALMASim cannot perfectly reproduce a single source, given
the uncertainty in the estimation of many source properties and observational parameters and conditions,
but aims at producing a distribution of sources which should include the real ones. Figs. 42 and 43 show
the integrated real dirty cubes (left), the simulated counterparts (right) and the spectral profiles of two QSOs
among the 31. The integrated images were obtained by integrating the cube over the frequency axis, while the
spectra by integrating each channel of the cubes over the spatial dimensions and by running a rolling mean
function over the obtained spectra. Table 5 shows a comparison of the measured fluxes, signal to noise ratios
and noise rms. To generate a dataset statistically similar to the real QSO sample, we generated 10 mock
simulation for each cube obtaining a total of 310 mock data cubes. Fig. 44, Fig. 45, Fig. 46, Fig. 47, Fig. 48,
Fig. 49, show, respectively, the distributions of source flux density, total cube flux, signal-to-noise ratio (SNR),
root mean square (RMS) noise, beam size, and cell size measured respectively on the real cubes (orange) and
mock ones (blue). Table 6 shows the measured distribution means and standard deviations and the p-values
of the Kolmogorov-Smirnov (KS) tests employed to asses whether the distributions are statistically similar.
A high KS value indicates a larger difference between the distributions, while a low value suggests that the
distributions are quite similar.
The p-value indicates the probability of observing a difference as large as or larger than the one measured,
assuming the two distributions are the same (null hypothesis). A high p-value (greater than 0.05) means there
is insufficient evidence to reject the null hypothesis, implying that the two distributions are statistically similar.

6.2 Measuring Simulation Times and Parallelization Capabilities

To assess the parallelisation potential of ALMASim, we compared its computational times for simulating 1000
ALMA observations. We ran ALMASim in parallel mode on the IBISCO HPC (using 224 cores across 56 jobs,
each with 4 cores and 16GB RAM) and in sequential mode on a laptop (with 4 cores and 16GB RAM). The cube
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Figure 41: Comparison of the luminosity distribution produced by ALMASim employing SED and Line ratios (blue) and that
empirically derived by Kirkpatrick et al. 2019 [101]
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Figure 42: Top left: integrated image of the real observation of the QSO J0842. Top right: simulation made with ALMASim.
Bottom: compared spectra of the two cubes.
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Figure 43: Top left: integrated image of the real observation of the QSO J1316+03564. Top right: simulation made with
ALMASim. Bottom: compared spectra of the two cubes.
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Figure 44: Comparison of the distributions of real (orange) and simulated (blue) source fluxes. Fluxes are measured by
integrating around the source position in the x,y, freq space. The integration is carried within the fulls spectral extension
of the cube and within the beam size in the spatial dimensions.
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Property J0842 Sim J0842 Real J1316 Sim J1316 Real
Total Flux (Jy/beam) 6.92 16.37 8.06 -10.96
Source Flux (Jy/beam) 0.85 0.51 0.17 0.78

Noise RMS 0.0033 0.0020 0.0009 0.0022
SNR 6.82 8.09 6.42 7.54

Table 5: Comparison of ALMASim simulation and real cubes for J0842 and J1316+03564.

Simulated Data Real Data KS p-value
Source flux 1.06 ± 1.30 0.72 ± 1.12 0.19 0.45
Total flux -36.32 ± 237.05 -51.93 ± 83.93 0.27 0.12
SNR 5.86 ± 2.34 5.86 ± 2.85 0.13 0.89
RMS Noise 0.12 ± 0.14 0.071 ± 0.097 0.34 0.023

Table 6: Mean, standard deviation, KS statistic and p-value measured on key parameters of the simulated and real QSOs.
KS statistics and p-values indicates a high similitude between simulated and real data.

dimensions were set to 256× 256× 256 pixels, and the source model was a single point source with an SNR of
1.5 and an infrared luminosity of 109L⊙ solar luminosities. The metadata query was performed locally in both
cases and excluded from the time analysis. The sequential run took 42.6 hours, averaging 2.56± 0.14 minutes
per cube. The parallel run on IBISCO HPC took 47.32 minutes, averaging 2.83 ± 0.3 seconds per cube, while
the average computation time per job on the HPC (2.65± 0.12 minutes) was higher than on the laptop. This is
attributed to the overhead of exchanging metadata and messages via SSH between the user’s local machine,
the HPC UI, and the Slurm scheduler. Overall, we observed a speed-up factor of approximately 54. However,
considering the 56-fold increase in resources used in the parallel run, the computational efficiency on the
HPC is estimated to be around 96%.

6.3 ALMASim Final Remarks

With adequate development, ALMASim has the potential to serve as a versatile tool for various applications
related to ALMA operations and research. Right now it can query the ALMA Archive, it can simulate data
based on it, and we have a separate suit that employs code from ALMASim to feed CASA the necessary meta-
parameters (beam size, cube dimension, antenna array) to transform the provided correlated visibilities in Deep
Learning ready data cubes.

We want to expand the capabilities of the simulator to other facilities, to tackle total power and multi-
wavelength astronomy. In case of ALMA total power data and new generation facilities, as AtLAST [103], our
team is planning to combine ALMASim with the software maria [104] in collaboration with the AtLAST team with
the aim of strengthening ALMASim to simulate single dish observations and to improve the atmospheric simula-
tions for ALMA simulated datasets. This development is out of the scope of this study. We foresee that these
implementations will allow DeepFocus to become capable to detect emissions from single dish observations,
paving the way to address ALMA group imaging.

7 The empirical noise study

Noise significantly hinders astronomical image interpretation. Current imaging tools are complex and time-
consuming, a problem that will be exacerbated by the upcoming data deluge from facilities like ALMA after the
WSU or SKA. ML techniques like DeepFocus promise to offer a solution, but they often require to be trained
on simulations as realistic as possible. On the other hand, realistic simulations are also necessary every time
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Figure 45: Comparison of the distributions of real (orange) and simulated (blue) total fluxes injected in the cubes.

the reliability of faint detection needs to be assessed (through completeness and contamination studies), for
example when computing number counts [105].

Current simulation algorithms (such as the CASA internal tasks “simalma” and “simobserve”) struggle to ac-
curately replicate the complex noise patterns found in interferometric astronomical images. These algorithms
rely on theoretical models that can’t fully capture the complex characteristics of real-world noise. Noise in inter-
ferometric images tends to be spatially correlated and displays non-stochastic patterns and flux distributions,
meaning the pixel fluxes don’t follow a Gaussian distribution. Even complex theoretical noise models consid-
ering random (statistical data distribution) noise, instrumental noise (including electronics), cosmic noise and
systematic errors introduced by the calibration process always miss some unpredictable features and patterns
observable in real images. To create more realistic simulations, it’s essential to analyze real images identifying
and replicating the specific noise patterns observed in them.

We developed a new method (NOISEMPIRE, Baronchelli et al. 2024, in preparation) to create more realistic
simulations of astronomical images. Unlike traditional methods, NOISEMPIRE analyzes real images to capture
the specific noise patterns and replicate them in simulations. This empirical approach is particularly useful for
interferometric data (like from ALMA) but has the potential to work with other instruments and wavelengths.
The current version of NOISEMPIRE is a Python-based prototype freely available online (version 1.0.2: available
on GitHub at this link). By combining different techniques, NOISEMPIRE is currently capable of:

∗ Isolating sources: The software internally runs source-extractor (SExtractor [106]), automatically deter-
mining the most effective combination of parameters.

∗ Measuring the background at different scales: Depending on the PSF of the input image, background
is computed at different scales.

∗ Measuring the RMS locally: The local simulated RMS mimics the variability observed in the input image.

https://github.com/Ibaronch/NOISEMPIRE
https://github.com/Ibaronch/NOISEMPIRE
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Figure 46: Comparison of the distributions of real (orange) and simulated (blue) Signal to Noise Ratios (SNR). SNRs
are measured by computing the mean source flux within a cylinder around the source position with a radius equal to the
beam size and a height equal to the line width (source cylinder). The noise RMS is computed within an a hollow cylinder
with the same center and volume of the source cylinder but with an inner radius starting at tree times the beam size.
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Figure 47: Comparison of the distributions of real (orange) and simulated (blue) noise RMSs. RMSs are measured by
randomly sampling beam sizes chunks away from sources.
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Figure 48: Comparison of the distributions of real (orange) and simulated (blue) Beam Sizes.

∗ Isolating high spatial frequency patterns (HFP) from the FFT of the image: Noise patterns at scales
smaller than the PSF (commonly generated by the largest baselines) are reproduced in the simulated
image.

∗ Isolating elliptical (PSF-shaped) and radial patterns: These patterns are a consequence of the sparse
coverage of the u-v plane.

∗ Correlating simulated noise as in the original reference image: To this purpose, a local autocorrela-
tion function (ACF) is computed from the original image and used to replicate a similar correlation in the
simulation.

∗ Adding a real sky image to the simulated noise: A user-provided real sky image can be added at a
pre–selected significance level.

∗ Reproducing the original pixel flux distribution of each noise component.

As shown in Figure 50, NOISEMPIRE can effectively identify and replicate noise patterns from real images
in simulations. Being capable of detecting patterns at different scales, detecting issues on specific baselines
during data acquisition will be enabled, allowing for timely interventions.

The current ALMAsim version only includes a beta version of the NOISEMPIRE module. The full integration of
NOISEMPIRE into the ALMAsim package will enable to produce purely empirical, purely theoretical or mixed sim-
ulations. In addition, training AI algorithms on NOISEMPIRE-identified real patterns is expected to produce more
realistic results. In the interim, NOISEMPIRE is being developed as a standalone tool. This two-step approach
has been adopted for multiple reasons: i) it allows for a modular approach, making the code easier to under-
stand, maintain, and test; ii) it minimizes the risk of delays or complete blocks during the development phase;
iii) it allows for parallel development (by different people); iv) it maximizes the return of our development study,
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Figure 49: Comparison of the distributions of real (orange) and simulated (blue) Cell sizes or pixel dimensions in
arcseconds.
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Figure 50: Examples of noise components, features and patterns isolated by our prototype (NOISEMPIRE v1.0.2) from a
real ALMA band 3 image of calibrator J1427-4206 (upper left panel). The same noise structure and patterns are used to
simulate a pure noise image (bottom left panel) and an image of the HL-Tau protoplanetary disk (bottom central panel) as
observed under similar conditions (bottom right panel).
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as NOISEMPIRE can be readily downloaded as is, and used with images from various observatories, including
different telescopes and wavelengths; v) Thanks to its ability to detect patterns, in the near future NOISEMPIRE

can also be employed as an alarm system during ALMA operations, for example, to detect corrupted baselines
in real time.

8 Final Remarks

We showcased the potential of two AI-based techniques to address challenges in ALMA synthesis imaging.

RESOLVE excels at detecting both diffuse emissions and point sources and will outperform other methods
in combining data from multiple MSs for group-level imaging. Future steps include refining cube imaging,
group imaging, self-calibration, full polarization imaging, and joint analyses with other ALMA projects and
observatories, making it a leading tool within the scientific community.

DeepFocus, a meta-learner, significantly accelerates image analysis and is poised to become the solution
of choice for real-time imaging, offering rapid support for operations like AoD tasks and enhancing archive
completeness.

The companion tool, ALMASim, supports machine learning development by benchmarking performance on
both real and simulated data. It improves ALMA dataset analysis and is refining ALMA simulations through
NOISEMPIRE. These efforts include simulating diverse source types and integrating physical models like
galaxy dynamics for advanced analysis.

Aligned with the ALMA 2030 Vision, our objectives include extending software functionalities, expanding
applications to both real and simulated ALMA datasets, and publishing results in high-impact scientific journals
to reach a broad international audience. Additionally, we aim to address key challenges in user interpretation,
facilitating broader adoption of the tools.

Furthermore, we plan to enhance QA0-level operations through AQUA-WSU by implementing real-time
image analysis for quick previews following calibration. Automated alerts will notify system astronomers via
PRTSPR tickets to enable prompt responses. These advancements will integrate seamlessly with the Sci-
ence Platform, providing real-time access to MOUS, improving workflows, and supporting joint analyses with
observatories such as JWST.

8.1 Integration into CASA and RADPS

Considering feedback from the panel, we are exploring avenues for integrating these tools into Radio AStron-
omy Data Processing System (RADPS) or the legacy CASA framework, keeping in mind that the latter will
be retired in the future. RADPS, being designed for compatibility with externally contributed software, offers
potential for collaboration.

From a user perspective, RESOLVE and DeepFocus demonstrate substantial benefits when employed out-
side the constraints of major-minor CASA Cycles. Their independent advancements highlight the advantages
of operating as standalone tools.

DeepFocus would not align well with CASA standalone due to mismatches in Python versions and tech-
nologies. However, officially entering the CASA/RADPS collaboration would be beneficial, particularly for
furthering the development of DeepFocus and ALMASim. The CASA team’s resources and expertise could
accelerate their integration and functionality.

For RESOLVE, remaining outside CASA offers greater development flexibility. While independence allows
rapid innovation, integrating specific capabilities into the next-generation CASA (ngCASA) team, i.e. RADPS,
could foster shared advancements.
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We remain open to discussions with NRAO’s Research and Development group and the RADPS team.
Collaborations with RADPS are possible if common ground is established; however, this depends on further
defining and clarifying RADPS’s scope, even though it is intended to align with ALMA’s evolving scientific and
operational objectives within the WSU framework.

Together, RESOLVE, DeepFocus, and ALMASim with NOISEMPIRE will drive advancements in data mining,
analysis, and operational support, contributing significantly to the future of ALMA and its scientific community.

9 Appendix

■ A BRAIN Study to Tackle Image Analysis with Artificial Intelligence in the ALMA 2030 Era (Guglielmetti, F.
et al.)

■ Bayesian and Machine Learning Methods in the Big Data era for astronomical imaging (Guglielmetti, F. et
al.)

■ Bayesian statistics approach to imaging of aperture synthesis data: RESOLVE meets ALMA (Tychoniec,
L. et al.)

■ 3D Detection and Characterisation of ALMA Sources through Deep Learning (Delli Veneri, M. et al.)

■ Software:

- ALMASim (Delli Veneri, M.)
- DeepFocus (Delli Veneri, M.)
- RESOLVE (IFT Group at MPA)
- NIFTy (IFT Group at MPA)
- NOISEmpire (Baronchelli, I.)
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