ALMA Science Archive School

- Archive Query Tools —

Toma Badescu, Aida Ahmadi, George Bendo

g OPTICON
‘ radioNet
==mi A PilOt

Query Tools

e ALMA Science Archive Web Interface
o ESO, NRAO, NAQ|

e pyVvO - ADQL queries through Table Access Protocol (TAP) service

o Documentation
o Examples for ALMA

e Astroquery
o Documentation
e ALminer: ALMA Archive Mining & Visualization Toolkit

o Documentation
o Tutorial

https://almascience.eso.org/aq/
https://almascience.nrao.edu/aq/
https://almascience.nao.ac.jp/aq
https://www.ivoa.net/documents/ADQL/20180112/PR-ADQL-2.1-20180112.html
https://almascience.eso.org/alma-data/archive/archive-notebooks
https://astroquery.readthedocs.io/en/latest/
https://alminer.readthedocs.io/en/latest/
https://nbviewer.org/github/emerge-erc/ALminer/blob/main/notebooks/tutorial/ALminer_tutorial.ipynb?flush_cache=True

pyVO

Python Virtual Observatory

pyVO - Installation and setup

- Python Virtual Observatory (pyVO) package for searching and accessing data from
archives that use VO standards.
- officially supported by the ALMA archive developers, unlike astroquery.

Installation:

>>> pip install pyvo

To use pvVO, the package needs to be imported into python using
>>> import pyvo

Access to the archive needs to be set up using

>>> service = pyvo.dal.TAPService("https://almascience.eso.org/tap")

pyVO - Searches

Once pyVO is set up, searches are typically done in two lines of code

- Thefirst line sets up input for a query
- The second line executes the search

For example, the following code performs a cone search in the ALMA archive at the coordinates of
RA=204.253958 and Dec=-29.865417 and with a radius of 0.006 degrees:

>>> query =f"""
SELECT *
FROM ivoa.obscore
WHERE
INTERSECTS(CIRCLE('ICRS',204.253958,-29.865417,0.006),s_region)=1

>>> output = service.search(query).to_table().to_pandas()

The object output is a pandas.DataFrame .

pyVO - Display Search Results

Search results can be displayed in multiple ways.

For example, the Proposal IDs associated with a search can be displayed using the following:

>>> print(output|['proposal_id'])

The RA and Declination of all fields identified from a search can be plotted using the following:
>>> import matplotlib.pyplot as plt

>>> plt.plot(output['s_ra'],output['s_dec'],marker='0',linestyle='none')
>>> plt.xlabel('RA')

>>> plt.ylabel('Dec’)

For reference, the columns in the table from a search can be displayed using the following:

>>> print(output.columns)

pyVO - Search Parameters

pyVO allows for searching using a variety of parameters.
In this example, pyVO is used to search by the ALMA Program ID:

>>> query = f"""
SELECT *
FROM ivoa.obscore
WHERE proposal_id like '%2018.1.01131.S%'

>>> output = service.search(query).to_table().to_pandas()
In this next example, pyVO is used to search by polarization mode for full polarization data:

>>> query = R
SELECT *
FROM ivoa.obscore
WHERE pol_states like '%/XX/XY/YX/YY/%'

>>> output = service.search(query).to_table().to_pandas()

pyVO - Advanced Search

More generalized searches are possible. This search will return all the results from Cycle 6 (Program IDs
beginning with 2018):
>>> query = fll mi

SELECT *

FROM ivoa.obscore

WHERE proposal_id like '%2018%'

>>> output = service.search(query).to_table().to_pandas()

Frequency searches use their own syntax, as shown in this example:
>>> query = f"""
SELECT proposal_id, member_ous_uid, target_name, frequency, bandwidth
FROM ivoa.obscore
WHERE (frequency - 0.5 * bandwidth/1e9) < 115.35
AND (frequency + 0.5 * bandwidth/1e9) > 115.20

>>> output = service.search(query).to_table().to_pandas()

pyVO - Advanced Search

pyVO can be combined with astropy.coordinates to resolve a source name and search at that
position, as shown in this example:

>>> import astropy
>>> coordinates = astropy.coordinates.SkyCoord.from_name("Cen A")
>>> ra=float(coordinates.ra.degree)
>>> dec=float(coordinates.dec.degree)
>>> query = f"""
SELECT *
FROM ivoa.obscore
WHERE INTERSECTS(CIRCLE('ICRS',6{ra},{dec},0.006),s_region)=1

>>> output = service.search(query).to_table().to_pandas()

pyVO - Advanced Search

This is different from searching for the ALMA source name (the name assigned
when the proposal was written). A search by the ALMA search name is shown below.
Note that this search may not return all of the observations of the target but just the
ones using this specific name!

>>> query = £
SELECT *
FROM ivoa.obscore
WHERE target_name like '%{CenA}%'

>>> output = service.search(query).to_table().to_pandas()

pyVO - Advanced Search

It's also possible to combine search criteria, as shown in this example that searches the archive for all Band 3
full polarization data from Cycle 7:

>>> query = f"""SELECT * FROM ivoa.obscore WHERE proposal_id like '%2019%'
AND band_list like '3’
AND pol_states like '%/XX/XY/YX/YY/%'

>>> output = service.search(query).to_table().to_pandas()
Here is another example showing how to combine a position and frequency search:

>>> query = f"""SELECT *
FROM ivoa.obscore
WHERE INTERSECTS(CIRCLE('ICRS',204.253958,-29.865417,0.006),s_region)=1
AND (frequency - 0.5 * bandwidth/1e9) < 115.15
AND (frequency + 0.5 * bandwidth/1e9) > 115.00

>>> output = service.search(query).to_table().to_pandas()

pyVO - Downloading Data

Data can be downloaded using the following example code:

>>> import os

>>> datalink = pyvo.dal.adhoc.DatalinkResults.from_result_url(\
f"https://almascience.eso.org/datalink/sync?ID={"'uid___A001_X135b_X6b'}")

>>> for dl in datalink:

>>> dl.cachedataset(filename=o0s.path.basename(dl['access_url’]))

The Member OUSs in the input for this command need to be formatted with underscores (_), whereas the
member_ous_id column from pyVO searches are in a different format. The colon (:) and slashes (/) in the pyVO
search results need to be replaced with underscores in this command, as shown in this example:

pyVoO search output: uid://A001/X135b/X6b

pyVvO download string: uid___A001_X135b_X6b

astroquery

Basic astroquery commands for searching the archive by source name,
location, observing configuration, and more

Quick intro: python lists and list comprehension

List Slices:
A=1[1,2,3,510]
print(A[:3])
[1,2,3]
print(A[0])

>>> 1

Numpy arrays:

A = np.array([1,2,3])
A[[True,True,False]]
>>>[1,2]

For loops:
Get only elements greater than 4
from A.

B=[aforainAifa>4]

Is equivalent to:

B=(]
forainA:
Ifa>4:
B.append(a)

Nested for loops:
Get lists in A=[1,2,5],[0,1,3],[4,5,6]]
that contain 2.

B = [aa for aa in A if any([a == 2 for a in aa])]

Is equivalent to:

Flag = False
B=1l
foraainA:
for a in aa:
ifa==2:
Flag = True
break
if Flag: B.append(aa)
Flag = False

Quick intro: SkyCoords, units, astropy tables

Units class defines and transforms units:

from astropy.coordinates import SkyCoord
from astropy import units as u
angle = 10 * u.deg

print(angle)

print(angle.value)
print(angle.to(u.arcmin))

10.0 deg

10.0

600.0 arcmin

force = 1*u.N

area = 1*u.m**2
print(force/area)

>>>1.N/m2
print((force/area).to(u.Pa))
>>>1. Pa

- Units package: variable type, a python quantity
- Value and unit can be accessed separately:
var.value and var.unit
- Automatic conversion respecting laws of physics
u.N/u.m**2 ->u.Pa
- Exercise: write a quantity using units for energy,
time, area, and frequency and convert it to Jy.

Check the help page for astropy.units and never be off
by a factor 1000 because of some milijansky ever again!

9)

https://docs.astropy.org/en/stable/units/index.html

Quick intro: SkyCoords, units, astropy tables

SkyCoords class defines and transforms astronomical coordinates and

operations with coordinates:

from astropy.coordinates import SkyCoord

from astropy import units as u

¢ = SkyCoord(ra=10.625*u.degree, dec=41.2*u.degree,
frame='icrs')

¢ = SkyCoord(10.625, 41.2, frame='icrs', unit='deg')

¢ = SkyCoord('00h42m30s', '+41d12m00s', frame='icrs')
¢ = SkyCoord('00h42.5m’, '+41d12m’)

¢ = SkyCoord('00 42 30 +41 12 00', unit=(u.hourangle,
u.deg))

¢ = SkyCoord('00:42.5 +41:12', unit=(u.hourangle, u.deg))

There are multiple valid ways of defining
coordinates. Functions exist to calculate
distance between coordinates, transform
from one reference frame or epoch to
another, etc. Check the help page for
astropy.coordinates.

https://docs.astropy.org/en/stable/coordinates/index.html

Quick intro: SkyCoords, units, astropy tables

Astropy Tables store data in columns, each column having a name.

Ironmiastiopyiian|SimpORilcb)c - Data from a table column can be

import numpy as np retrieved by using

a =[0.1245, 0.456] table_name[“column_name”]

b =[124.234, 231.234] - Using indices retrieves the ith+1
c =[3.1, 5.6] row:

ex_table= Table([a,b,c],names = (“ra”,”dec”,”dist”)) table_name[0] retrieves the first row.
There are multiple valid ways of defining a table - To see alist of all table columns:
new_table = Table() print(table_name.colnames)
new_table[“ra”] = [0.1245, 0.456]

new_table[“dec’] = [124.234, 231.234] For more information on tables, check
new_table[“dist"] = [3.1, 5.6] the help page.

It’s easy to add a new column,e.g. “L” column
ex_table[L"] = [9.84,9.95]

https://docs.astropy.org/en/stable/table/index.html

First step: authentication

Authentication with an ALMA central authentication center (CAS) is not
required to perform general queries, but it is needed to retrieve proprietary
data.

Astroquery module version 0.4.7.dev8076 has to be installed.

from astroquery.alma Instantiates the Alma Class, initiates
P — Iogln with “username” (optional). You
will be asked for your password.

alma.login("username")

Query by object name

This will search the ALMA archive for products targeting an object.

The object name is retrieved by astropy, looking in 'simbad', 'ned’, or 'vizier'.

result = alma.query_object('m83', public=True, science=True, payload=None)

parameters:

public - boolean, retrieve only public data

science - boolean, retrieve only science observation

payload - dict, to pass additional constraints to the query, will be discussed later

The result is an astropy table.

Query a Region

User can search for all observations that cover a region around a central position

from astropy import units as u

from astropy import coordinates

galactic_center = coordinates.SkyCoord(0*u.deg, 0*u.deg, frame='galactic')
results = Alma.query_region(coordinates = galactic_center,radius = 1*u.deq)
results = Alma.query_region(“17h45m40.04s —-29d00m28.1s”, 1)

results = Alma.query_region(“17 45 40.04 -29 00 28.17, 1)

results = Alma.query_region(“17:45:40.04 -29:00:28.17, 1)

coordinates - gives central position can be SkyCoord object or string of coordinates

radius - can be a number (automatically converted to degrees) or an astropy.unit for angle.
All above queries are equivalent.

An extra dict object can be passed to a payload parameter for additional constraints

Other parameters and the payload dictionary

All query commands accept additional parameters. These can be encapsulated in a python
dictionary or simply added as function parameters. The keys for the alma archive are given
by the Alma.help() command.

result = alma.query_region('M83', radius=25*u.arcmin, pi_name="Smith™")

Retrieve all observations following the given constraints, having a Pl whose name contains
the word “Smith”

extra_params = dict(band_list=[3,7],sensitivity_10kms="<10")
result = alma.query_region('M83', radius=25*u.arcmin, payload = extra_params)

Query around M83, for band 3 and 7 observations, with a sensitivity at a resolution of
10km/s better than 10 mJy/beam.

Other parameters and the payload dictionary

All astroquery search parameters:

Source name (astropy Resolver) source_name_resolver Water vapour (mm) water_vapour
Source name (ALMA) source_name_alma Project code project_code

RA Dec (Sexagesimal) ra_dec Project title project_title
Galactic (Degrees) galactic Pl name pi_name

Angular resolution (arcsec) spatial_resolution Proposal authors proposal_authors
Largest angular scale (arcsec) spatial_scale_max Project abstract project_abstract
Field of view (arcsec) fov Publication count publication_count
Frequency (GHz) frequency Science keyword science_keyword
Bandwidth (Hz) bandwidth Bibcode bibcode

Spectral resolution (KHz) spectral_resolution Title pub_title

Band band_list First author first_author
Observation date start_date Authors authors
Integration time (s) integration_time Abstract pub_abstract

Pol type (Single, Dual, Full) polarisation_type Year publication_year
Line sens 10 km/s (mJy/beam) line_sensitivity Public data only public_data
Continuum sensitivity (mJy/beam) continuum_sensitivity Science observations only science_observations

Filtering information after retrieval

Downloaded astropy tables have more categories (columns) than search parameters available for
an Alma astroquery.

Feasible to retrieve a large table from a more general query and filter it in the python script

Example: check frequency coverage
from astroquery.utils import parse_frequency_support
m83_data = alma.query_object('M83")
m83_data['freq_cover’] = [parse_frequency_support(item[‘frequency_support’]) for item in m83_data]
our_freq =95 * u.GHz

new_m83_data = m83_data[[any([item[0] < our_freq < item[1] for item in row]) for row in m83_data['freq_cover’]]]
parse_frequency_support can take a string from the ‘frequency_support’ column and transform it
In to a list of arrays, each array containing the start and end frequency of each spectral window,
i.e. item[0] and item[1]
new_m83_data now contains only m83_data table rows where our_freq is observed

All m83_data categories stored in: m83_data.colnames
S

Downloading Archival Data

Downloadable data sets are uniquely identified by their

m83_data = alma.query_object('M83") _ : _
observed unit set id (“member_ous_id").

uids = np.unique(m83_data['member_ous_uid")

link_list = alma.get_data_info(uids[:3], Queries can return multiple results corresponding to the
L same ous_id, in the case of a project with multiple

expand_tarfiles=True) observing configurations for a science goal.

alma.cache_location = '/big/external/drive/'

The uids variable here holds only unique ous_ids, after

applying np.unique to the list of uids given by

Or: m83_data['member_ous_uid'"].

alma.download_files(link_list, cache=True)

aima.retrieve” data from,uid(Uids{0]) Incomplete downloads are held at cache_location.

Downloaded files are extracted if expand_tarfiles is set to
True.

Downloading Archival Data

Download only the fits files from a project, e.g.,
the first one on the uids list:

link_list = alma.get_data_info(uids[0], expand_tarfiles=True)

fits_urls = [url for url in link_list if "fits' in url]
filelist = alma.download_files(fits_urls)

link_list is a list of links to each file in the project identified by the ous_id
stored at uids[0]
fits_urls contains only links to files with the “* fits” ending

data files are downloaded from those links in fits_urls

Query with ADOL through astroquery

Most basic usage:

Query = “select * from ivoa.obscore where frequency > 1006 and frequency <
120 and science_keyword like ‘*galaxies*’ ”
results = alma.query_tap(Query)

Selects all entries from the database that follow the constraints set after the
keyword where. Multiple constraints can be chained with the and keyword.

The keywords can be displayed with the alma.help_tap() command.

Installation Dependencies

numpy
pip install alminer matplotlib

pandas

pyvo
astropy
astroquery

ALminer

ALMA archive mining and visualization toolkit

Documentation: https://alminer.readthedocs.io/

g miner

ALMA archive mining and visualization toolkit

Python-based code to effectively query, analyse, and visualise the ALMA Science Archive
+ download ALMA data products and/or raw data

Documentation:

%o Tutorial Jupyter Notebook: (G LD

Yuld I-TRAIN video:

Query

® Target name and a search radius around them:

myquery = alminer.target(["Orion KL", "AB Aur"], search radius=5.0)

HELLO

my name is

Orion KL

Number of projects = 35

Number of observations = 91
Number of unique subbands = 287
Total number of subbands = 403
40 target(s) with ALMA data = ['Orion KL', 'Orion H20 maser outburst', 'OrionFieldl-2', 'OrionFieldl-1', 'OrionKL',
‘orion-IRc2', 'f£1', 'f3', r'f14', 'f12', rf11', 'f15', '£13', 'f10', 'Orion_Source_ I', 'OMCl_SE', 'orion_ kl',6 'BN',
'OMC1 NW', 'BN-KL', 'Orion KL', '£23', 'OrionKL-SV', 'OMC-1', 'ONC', 'Orion BNKL source I', 'Orion', 'OMC-1 Region5',
'OMC-1 Region2', 'OMC-1 Region4', '104', 'HC602 HC606 HC608', 'Orion KL Field 1 Orion Hot Core',

'Orion KL Field 3 North-west Clump', 'Orion KL Field 2 SMAl', 'ONC Mosaic', '£16', 'Orionl', 'Orion-KL', 'ORS-8']

Number of projects = 3

Number of observations = 3

Number of unique subbands = 17

Total number of subbands = 17 é;g
3 target(s) with ALMA data = ['AB_Auriga', 'AB_Aur', 'ab_aurigae']

-------------------------------- £

® Positions in the sky and a search radius around them: 9 & &

alminer.conesearch(ra=201.365063, dec=-43.019112, search radius=10.0)

Query

® Any (string-type) keywords defined in ALMA TAP system

\>Very powerful tool for querying topics of interest, especially when keywords are combined!

words in quotations are interpreted as a 'PHRASE'

alminer.keysearch ({"proposal abstract":[" 'high-mass star formation' "]})

spaces are interpreted with 'AND' logic

alminer.keysearch ({"proposal abstract":[" 'high-mass star formation' outflow,disk "]})

N\ N

AND AND
when multiple values are provided for a given keyword, they are queried using 'OR' logic

alminer.keysearch ({"proposal abstract":[" 'high-mass star formation' ", " 'massive star formation' "]})

or
when multiple keywords are provided, they are queried using 'AND' logic

alminer.keysearch ({"proposal abstract":["'star formation'“];/<fcientific_category“:[“'Galaxy evolution'"]})

AND
s

Analyze

® Query results are in the form of PANDAS DataFrame that can be used to
further narrow down the search

observations = alminer.keysearch({'science keyword': ["'Galaxy chemistry'"]})

selected = observations|[(observations['ang res arcsec'] < 0.5) &
(observations['vel res kms'] < 1.0)]

® Line coverage based on frequency L L I T s rvations at 220.5 Gie

alminer.line coverage (observations, Number of projects = 6

line freg=220.5, Number of observations = 7
z=0, Number of unique subbands = 7
' ' : 1l number of subbands = 7
line name="My favourite line" Tota
— Y ! 5 target(s) with ALMA data = ['Arp220', 'ngc_3256',

print_targets=True) 'IRAS_13120-5453', 'ngc253', 'NGC_253']

® Coverage of CO, *CO, C'®0 lines

alminer.CO lines (observations, z=1, print targets=True)

Visualize

® Plot an Overview of the observations

alminer.plot overview(observations, savefig="galaxy chemistry")

Observed Frequencies

100 M

Number of observations

IRI0A0

100

250 300
Frequency (GHz)

Band 3:
Band 4:
Band 5:
Band 6:
Band 7:

obs. = 370
obs. = 144
obs. = 68

obs. = 420
obs. = 332

9, 10: obs. = 27

5
5 3

Number of observations

1000

5]
5 3

Number of observations

Angular resolution

Largest Angular Scale

3 min = 0.02, max = 12.04

1000

3 min = 0.5, max = 192.6

0

- @
S 100
= =]
©
- c
@
w
'8 10
-
s}
c
[
Qo
E
=2
T T T T T 0 T T T T T T T T
2 4 6 8 10 12 r-) 50 s 100 125 150 175 20
Beam size (arcsec) LAS (arcsec)
Frequency resolution Velocity resolution
1 min = 244.14, max = 31250.0 1000 =1 min = 0.3, max = 95.04
- w
[=4
- £ 100
=4 .
c
@
v
Q
S
o
c
@
Qo
£
=1 1
=2

5000 10000 15000 20000 25000 30000

Frequency resolution (kHz)

20 40 60 80
Velocity resolution (km s™1)

Visualize

® Plot an overview of the observations and highlight a given frequency

alminer.plot line overview(observations, line freq=400.0, z=2)

Number of observations

100

10

Observed Frequencies

100

Band 3: obs. = 370
Band 4: obs. = 144
obs. =6

Band 5: obs. = 68

Band 6: obs. = 420
Band 7: obs. = 332
Band 8, 9, 10: obs. = 27

BII00RND

250 300
Frequency (GHz)

Number of observations

Number of observations

,ﬂ
S
S

-
1

-

1000

100

10

Angular resolution

Largest Angular Scale

1000

= 3 min = 0.02, max = 12.04 3 min = 0.5, max = 192.6
min = 0.26, max = 8.03 — min = 2.21, max = 48.39
- @ .
- oS 100
= =1
©
— I
Q
w
Q
o 10
-
o
7 3
7 E N
2 7
0 2 4 6 8 10 12 0 25 50 75 100 125 150 175 20
Beam size (arcsec) LAS (arcsec)
Frequency resolution Velocity resolution
1 min = 244.14, max = 31250.0 1000 1 min = 0.3, max = 95.04
— min = 976.56, max = 3906.25 min = 2.18, max = 8.75
— 2 L
£ 100
—] -
c
(‘U
w
Q
S
o
@
Z g
7 € 7
7 El

0

5000 10000 15000 20000 25000 30000
Frequency resolution (kHz)

Zb 46 60 80
Velocity resolution (km s~1)

Visualize

Band 3: obs. = 370 Band 4: obs. = 144
® Plot an overview of the observed o | climreell P ol | s
frequencies in each band and
highlight CO lines
alminer.plot bands (observations, B Frequency (GHe)

Band 5: obs. = 68 Band 6: obs. = 420

mark CO=True,

1000
z=0.5) : |
Observed Frequencies
: Band 3: obs. = 370 1
1000 : Band 4: obs. = 144
¢ : ! Band 5: obs. = 68 0 - o

5
8

-
S

Number of observations
Number of observations

°CO(2-1)

c*0(2-1)
C1%0(4-3)
Y1co(4-3)

Co(4-3)
C1%0(5-4)
H1c0(5-4)

.Cr0(1-0)

= TVa _
1 mnm |
g 5 53 —
o o
‘("_'u‘ s U; - H E 170 180 920 200 210 220 230 240 250 260 270
2 = [Band 6: obs. = 420 Frequency (GHz) Frequency (GHz)
Q1007 {@EE Band 7: obs. = 332 Band 7: obs. = 332 Band 8, 9, 10: obs. = 27
Q s H — = - =
o = : 9, 10: obs. =27 1000 i & il 100 [-
5 5 : “ R T L » © i N
e ® | | B s
2 2 2
[o 10
= k]]
@ @
Qo °o 1
0- € €
300 3 3

Frequency (GHz)

450 460 470 480 490
Frequency (GHz) Frequency (GHz)

320 340

And more!

® Save the DataFrames and plots
® Advance query options through TAP
® Download raw/products data

alminer.download data(observations, fitsonly=True, dryrun=True, location=‘'./data’',
filename must include=[' sci', '.pbcor', 'cont'], print urls=True)

ALminer resources

Documentation: https://alminer.readthedocs.io/

O GitHub: https://github.com/emerge-erc/ALminer

Extensive tutorial

Static version at https://alminer.readthedocs.io/

. Live Jupyter Notebook

. (v@@

You([l) I-TRAIN video: https://bit.lv/ALminer I-TRAIN video

https://alminer.readthedocs.io/
https://bit.ly/ALminer_I-TRAIN_video

Exercises

Hands-on Session

Go to the following link: https://github.com/aida-ahmadi/ASA-School-2022

https://github.com/aida-ahmadi/ASA-School-2022

Go to the following link: https://github.com/aida-ahmadi/ASA-School-2022

¥ main ~ ¥ 1branch © 0 tags Go to file Add file ¥

@ aida-ahmadi Fixed error in frequency range query 1056d37 18 hoursago ‘)19 commits
[.gitignore

[README.md

[exercises_answers.ipynb <¢—— Tutorial Exercises + Solutions

[exercises_questions.ipynb <¢——— Tutorial Exercises

[requirements.txt

(Y tutorial_slides.pdf <¢——— Tutorial Slides

Download notebooks Click on a notebook to open
Right click on Download

Save Link As...
e

https://github.com/aida-ahmadi/ASA-School-2022

Go to the following link: https://github.com/aida-ahmadi/ASA-School-2022

See static notebooks

Tutorial Jupyter Notebook (Static versions)
Exercises

Exercises + Solutions

Work on the cloud

Tutorial Jupyter Notebook (Interactive versions) Benefit: No need to install any
of the packages & Jupyter Notebook
Exercises
X Caveat: It times out if you are
Exercises + Solutions inactive for too long (save it locally)

https://github.com/aida-ahmadi/ASA-School-2022

