
European Organisation for Astronomical Research in the Southern Hemisphere

Programme: VLT

Project/WP: Science Data Products Group

EsoReflex ZAP tutorial

Document Number: ESO-287180

Document Version: 2.0

Document Type: Manual (MAN)

Released on: 2017-03-01

Document Classification: Public

Prepared by: L. Coccato

Validated by:

Approved by:

Name

ESO – Karl-Schwarzschild-Str. 2 – 85748 Garching bei München – Germany
www.eso.org

This page was intentionally left blank

EsoReflex ZAP tutorial

Doc. Number: ESO-287180
Doc. Version: 2.0
Released on: 2017-03-01
Page: 3 of 27

Change record

Issue/Rev. Date Section/Parag. affected Reason/Initiation/Documents/Remarks

1.0 01-07-2016 All First official release
2.0 01-03-2017 All Association of dedicated sky exposures.

This page was intentionally left blank

EsoReflex ZAP tutorial

Doc. Number: ESO-287180
Doc. Version: 2.0
Released on: 2017-03-01
Page: 5 of 27

Contents

1 Introduction and scope 7

2 Installation 8

2.1 Installing Reflex workflows via macports . 8

2.2 Installing Reflex workflows via rpm/yum . 8

2.3 Installation with the install_esoreflex script . 9

2.3.1 Using your preferred Python environment . 10

3 System requirements 11

4 Quick start: reducing the demo data 12

4.1 Processing your own datacubes . 14

5 About The Reflex Canvas 18

5.1 Saving And Loading Workflows . 18

5.2 Buttons . 18

5.3 Workflow States . 18

6 The muze_zap workflow 19

6.1 Creation of datasets . 19

6.2 Workflow actors . 20

6.2.1 Simple Actors . 20

6.2.2 Lazy Mode . 20

6.3 Workflow composite actors . 21

7 Removing the residuals of the sky background 22

7.1 Creation of Sky Mask . 22

7.1.1 Description of the interactive window . 22

7.1.2 Description of the parameters . 23

7.2 Removing sky residuals via ZAP . 25

7.2.1 Calculation of the sky principal components (SVD) . 25

7.2.2 Fit the sky principal components to the object . 25

EsoReflex ZAP tutorial

Doc. Number: ESO-287180
Doc. Version: 2.0
Released on: 2017-03-01
Page: 6 of 27

7.2.3 Main parameters of the ZAP code . 26

EsoReflex ZAP tutorial

Doc. Number: ESO-287180
Doc. Version: 2.0
Released on: 2017-03-01
Page: 7 of 27

1 Introduction and scope

Reflex is the ESO Recipe Flexible Execution Workbench, an environment to run ESO VLT pipelines which
employs a workflow engine to provide a real-time visual representation of a data reduction cascade, called a
workflow, which can be easily understood by most astronomers. The basic philosophy and concepts of Reflex
have been discussed by Freudling et al. (2013A&A...559A..96F). Please reference this article if you use Reflex
in a scientific publication.

The current MUSE reflex distribution contains a dedicated workflow, muse_zap.xml, which makes use of the
Zurich Atmosphere Purge code (ZAP, Soto et al. 2016, MNRAS, 458, 3210). It is a Python code that has been
created to remove residual sky contamination from the MUSE datacubes by performing principal components
analysis.

Typically, the datacubes produced by the MUSE pipeline contain a residual sky contamination of the order of
≈ 5% of the sky signal. This residual contamination can be higher if the sky has been evaluated on dedicated
exposures, because of the time difference between the sky and target observations. The ZAP code helps to
remove this residual contamination.

The purpose of this document is to instruct the user on the use of the muse_zap.xml workflow to efficiently
remove residual sky contamination from MUSE datacubes.

In the following, we assume that the user is familiar with:

• the basic concepts of esoreflex;

• the basic steps of the reduction with the MUSE pipeline, in particular with the products category names
such as DATACUBE_FINAL and IMAGE_FOV;

• the ZAP code.

Reflex and the data reduction workflows have been developed at ESO and they are fully supported. If you have
any issue with this particular workflow, please contact sdp_muse@eso.org for further support.

EsoReflex ZAP tutorial

Doc. Number: ESO-287180
Doc. Version: 2.0
Released on: 2017-03-01
Page: 8 of 27

2 Installation

Reflex and the muse_zap workflows can be installed in different ways: via package repositories, via the
install_esoreflex script or manually installing the software tar files.

The recommended way is to use the package repositories if you operating system is supported. The macports
repositories support OS X (section 2.1), while the rpm/yum repositories support Fedora 20/21/22/23 (section
2.2). For any other operating system it is recommended to use the install_esoreflex script (section
2.3).

2.1 Installing Reflex workflows via macports

This method is supported for OS X operating system. It is assumed that macports (www.macports.org) and java
are installed. If you have any problem with this installation method, please read the full documentation at
www.eso.org/sci/software/pipelines/installation/macports.html.

For a quick installation, the following steps will install the ESO pipeline macports repository, the MUSE pipeline,
including the Reflex workflows support and Reflex itself:

• Set up the repository:

curl ftp://ftp.eso.org/pub/dfs/pipelines/repositories/macports/setup/Portfile -o Portfile
sudo port install
sudo port sync

• Install Reflex, the MUSE pipeline, demo data, and the workflows:
sudo port install esopipe-muse-all

Other useful installation options are:

• To show the list of available top level packages for different instruments is given by:

port list esopipe-*

• To install only the ZAP workflow, type:

sudo port install esopipe-muse-contrib-wkf

2.2 Installing Reflex workflows via rpm/yum

This method is supported for Fedora 20/21/22/23 operating systems. If you have any problem with this installa-
tion method, please read the full documentation at
www.eso.org/sci/software/pipelines/installation/rpm.html.

For a quick installation, the following steps will install the ESO pipeline rpm repository, the MUSE pipeline,
including the Reflex workflows support and Reflex itself:

EsoReflex ZAP tutorial

Doc. Number: ESO-287180
Doc. Version: 2.0
Released on: 2017-03-01
Page: 9 of 27

• Set up the repository for Fedora 20/21:

sudo yum install yum-utils
sudo yum-config-manager \

--add-repo=ftp://ftp.eso.org/pub/dfs/pipelines/repositories/fedora/esorepo.repo

• Set up the repository for Fedora 22/23:

sudo dnf install dnf-plugins-core
sudo dnf config-manager \

--add-repo=ftp://ftp.eso.org/pub/dfs/pipelines/repositories/fedora/esorepo.repo

• Install the MUSE pipeline (Fedora 20/21):
sudo yum install esopipe-muse-all

• Install the MUSE pipeline (Fedora 22/23):
sudo dnf install esopipe-muse-all

To install the muse_zap workflow only, replace esopipe-muse-allwith esopipe-muse-contrib-wkf.
To see the list of all available packages to install, type
yum list esopipe-*-all # (Fedora 20/21)
dnf list esopipe-*-all # (Fedora 22 or newer)

2.3 Installation with the install_esoreflex script

Download the install_esoreflex script

ftp://ftp.eso.org/pub/dfs/reflex/install_esoreflex

and execute it by typing:

chmod u+x install_esoreflex
./install_esoreflex

On the top of the esoreflex requirements common for the other workflows that are specified at:

http://www.eso.org/sci/software/pipelines/reflex_workflows/

the muse_zap workflow requires the following Python packages: astropy and scipy. If they are not present in
your system, please install them by executing:

sudo yum install python-astropy scipy

for Fedora systems; or

sudo apt-get install python-astropy python-scipy

for Ubuntu systems.

For Mac OS X type use:

sudo port install astropy py-scipy

EsoReflex ZAP tutorial

Doc. Number: ESO-287180
Doc. Version: 2.0
Released on: 2017-03-01
Page: 10 of 27

2.3.1 Using your preferred Python environment

If you have your Python environment (e.g., installed via miniconda) that contains all the prerequisites including
astropy and scipy, you can instruct esoreflex to use it instead of the default Python. To do so, proceed as follows:

1. Creation of a esoreflex configuration file. From your terminal type:

esoreflex -create-config zap.rc

This will create a default configuration file, named zap.rc. Any other name is ok.

2. Edit the newly created zap.rc and change the Python command call. The line to modify is:

esoreflex.python-command=python

which is located around line 27. The value you have to enter is the full path of Python executable of the
environment you’d like to use. For example, if you environment is saved in:

/home/user/miniconda/envs/my_environment/

the line to insert in the configuration file is:

esoreflex.python-command=/home/user/miniconda/
envs/my_environment/bin/python

3. Instruct esoreflex to use the newly edited zap.rc file. Start esoreflex with the command line:

esoreflex -config <full_path>/zap.rc

In this way, esoreflex will use the desired Python environment. Please, specify the full path to the zap.rc
configuration file.

EsoReflex ZAP tutorial

Doc. Number: ESO-287180
Doc. Version: 2.0
Released on: 2017-03-01
Page: 11 of 27

3 System requirements

Handling MUSE datacubes with nominal spatial sampling and wavelength coverage is highly demanding in
terms of memory. We recommend to use at least 20 Gb RAM for single pointing datacubes. For computers with
limited resources one way to process the data is to use a small number of principal components. See Sections
4.1 and 7.2 for further information.

The ZAP code is parallelized, therefore it takes advantage of all the available processors to speed up the entire
process.

The demo dataset was created by setting the spatial sampling of the cube to 0.8 arcsec/pixel (full-size datacubes
have 0.2 arcsec/pixel), and can be processed with a 8 Gb RAM computer using default parameters.

EsoReflex ZAP tutorial

Doc. Number: ESO-287180
Doc. Version: 2.0
Released on: 2017-03-01
Page: 12 of 27

4 Quick start: reducing the demo data

The current distribution of the muse_zap workflow contains two demo datasets.

The first dataset contains a fully reduced and sky subtracted datacube (name: CUBE1.fits, category:
DATACUBE_FINAL) and its corresponding white-light image (name: FOV1.fits, category: IMAGE_FOV).

The second dataset contains a fully reduced and sky subtracted datacube (name: CUBE2.fits, category:
DATACUBE_FINAL), its corresponding white-light image (name: FOV2.fits, category: IMAGE_FOV), a
cube of residual sky background from a dedicated sky exposure (name: DATACUBE_SkyRes.fits, cat-
egory: DATACUBE_FINAL), and its corresponding white-light image (name: IMAGE_SkyRes.fits cate-
gory: IMAGE_FOV).

Note: a cube of residual sky background from a dedicated sky exposures can be obtained from the main muse
reflex workflow (see the main muse reflex tutorial, Section 8.3).

For the user who is keen on starting reductions without being distracted by detailed documentation, we describe
the steps to be performed to use the ZAP code to clean residual sky background contamination from the demo
data set supplied with the current release. By following these steps, the user should have enough information
to attempt a reduction of his/her own data without any further reading.

1. Type:

<install_dir>/bin/esoreflex -l&

at the terminal command line. A list of available workflows and their short-cut names will appear.

2. Start the muse_zap workflow by typing:

<install_dir>/bin/esoreflex muse_zap&

The main muse_zap.xml workflow will appear (Figure 4.1). Alternatively, you can open an empty reflex
canvas by typing:

<install_dir>/bin/esoreflex &

The empty esoreflex canvas will appear. You can then open the muse_zap workflow by clicking on
File -> Open, selecting first MUSE-<version>/contrib_wkf/ and then the file muse_zap.xml
in the file browser.

Note: <install_dir> is the reflex installation directory specified at the reflex installation (e.g.,
/home/username/reflex/install). If the command esoreflex is present in your path, or an alias has been
defined, there is no need to prepend the <install_dir>/bin/ path to it.

3. To aid the visual tracking of the reduction cascade, it is advisable to use component (or actor) highlight-
ing. Click on Tools -> Animate at Runtime, enter the number of milliseconds representing the
animation interval (100 ms is recommended), and click OK .

EsoReflex ZAP tutorial

Doc. Number: ESO-287180
Doc. Version: 2.0
Released on: 2017-03-01
Page: 13 of 27

4. Under “Setup Directories” in the workflow canvas there are some parameters that specify important direc-
tories (green dots).Setting the value of ROOT_DATA_DIR is the only necessary modification if you want
to process data other than the demo data1, since the value of this parameter specifies the working direc-
tory within which the other directories are organized. Double-click on the parameter ROOT_DATA_DIR
and a pop-up window will appear allowing you to modify the directory string, which you may either edit
directly, or use the Browse button to select the directory from a file browser. When you have finished,
click OK to save your changes.

Set the INPUT_DATA_DIR to the directory that contains the datacubes to be cleaned (with category
DATACUBE_FINAL) and their corresponding collapsed images (with category IMAGE_FOV)2. Again,
for the demo dataset, this directory is automatically set to the right path. The INPUT_DATA_DIR can
also contain user supplied mask (with the category MASK_FINAL_CUBE) that separates spaxels that
contain only sky (value 0) from spaxels that contain objects (value 1). A user supplied mask, if present,
will be associated to the datacube with the same observation time (header keyword MJD-OBS).

5. Press to start the workflow. The following steps will be executed:

• If EraseDirs=true was set, the workflow will erase the content of the log, bookkeeping, and
temporary directories.

• The workflow will highlight the Data Organiser actor which recursively scans the raw data
directory (specified by the parameter INPUT_DATA_DIR under “Setup Directories” in the workflow
canvas) and constructs the DataSets.

Datasets are created on the basis of header information and a set of OCA3. A dataset for each
datacube in the INPUT_DATA_DIR will be created. Each dataset has one IMAGE_FOV and one
sky mask (if present) with the same MJD-OBS as the datacube. Datasets without a IMAGE_FOV
are considered incomplete.

• The Data Set Chooser actor will be highlighted next and will display a “Select Datasets” win-
dow (see Figure 4.2, top panel) that lists the DataSets along with the values of a selection of useful
header keywords4. The first column consists of a set of tick boxes which allow the user to select
the DataSets to be processed. By default all complete DataSets which have not yet been reduced
will be selected. Incomplete datasets are grayed out in the window. If you put the mouse cursor
on the top of an incomplete dataset, you will get information on the missing file categories. Each
dataset can be inspected by pressing the “Inspect Highlighted” button; the Select Frames window
will appear (Figure 4.2, bottom panel).

6. Click the Continue button and watch the progress of the workflow by following the red highlighting of
the actors. A window will show which DataSet is currently being processed. If interactivity is enabled, the
mask creation can be done interactively and a dedicated window will appear. This will be discussed in
Section 7.1. Click the Continue button to proceed with the next steps of the analysis.

1If you used the install script install_esoreflex, then the value of the parameter ROOT_DATA_DIR will already be set
correctly to the directory where the demo data was downloaded.

2All categories of the MUSE internal data products are supported.
3OCA stands for Organization, Classification, Association and refers to rules, which allow to classify the raw data according to the

contents of the header keywords, organize them in appropriate groups for processing, and associate the required calibration data for
processing.

4The keywords listed can be changed by right-clicking on the DataOrganiser Actor, selecting Configure Actor, and then
changing the list of keywords in the second line of the pop-up window.

EsoReflex ZAP tutorial

Doc. Number: ESO-287180
Doc. Version: 2.0
Released on: 2017-03-01
Page: 14 of 27

7. The workflow processes the selected datasets separately. Only when the reduction of one dataset is
completed, the reduction of the next dataset starts.

8. The workflow will continue with the remaining DataSets following the same steps described above.

9. After the workflow has finished, all the products from all the DataSets can be found in a directory under
END_PRODUCTS_DIR with the named with the workflow start timestamp. Further sub-directories will be
found with the name of each DataSet.

10. When the reduction of the last DataSet is finishes, a pop-up window called Product Explorer will appear
showing the datasets which have been so far reduced together with the list of final products. This actor
allows the user to inspect the final data products, as well as to search and inspect the input data used to
create any of the products of the workflow. Figure 4.3 shows the Product Explorer window.

Well done! You have successfully completed the quick start section and you should be able to use this knowl-
edge to reduce your own data. However, there are many interesting features of Reflex and the ZAP workflow
that merit a look at the rest of this tutorial.

4.1 Processing your own datacubes

To process your own MUSE datacubes, simply change the path to the input data directory. This is defined at the
top of the workflow window in the area labeled Setup Directories . Simply double click on the INPUT_DATA_DIR,
enter the path to your raw science directory and then re-run the workflow in the same way as was done for the
tutorial demo data.

If the reduction of your dataset requires high memory, you can limit the memory usage by decreasing the number
of components to fit. This can be achieved by setting Eigenspectra_detection_type (optimizeType)=’none’
and specifying the components to use via the Percentage of eigenspectra(pevals) or number of eigenspec-
tra(nvals) parameters in the main workflow canvas.

Also, you can save time when experimenting with pevals and nevals by passing the file with the components
via the External Sky components (full path) parameter in the main workflow canvas. In this way, the ZAP
code does not recompute the components and is much faster.

See section 7.2 for further information.

EsoReflex ZAP tutorial

Doc. Number: ESO-287180
Doc. Version: 2.0
Released on: 2017-03-01
Page: 15 of 27

Figure 4.1: The muse_zap.xml Reflex workflow; it executes the Zurich Atmosphere Purge code (Soto et
al. 2016) to remove residual sky contamination from the datacubes.

EsoReflex ZAP tutorial

Doc. Number: ESO-287180
Doc. Version: 2.0
Released on: 2017-03-01
Page: 16 of 27

Figure 4.2: The Select Datasets window (top) and the Select Frames window (bottom).

EsoReflex ZAP tutorial

Doc. Number: ESO-287180
Doc. Version: 2.0
Released on: 2017-03-01
Page: 17 of 27

Figure 4.3: The Product Explorer window.

EsoReflex ZAP tutorial

Doc. Number: ESO-287180
Doc. Version: 2.0
Released on: 2017-03-01
Page: 18 of 27

5 About The Reflex Canvas

5.1 Saving And Loading Workflows

In the course of your data reductions, it is likely that you will customise the workflow for various data sets, even
if this simply consists of editing the ROOT_DATA_DIR to a different value for each data set. Whenever you
modify a workflow in any way, you have the option of saving the modified version to an XML file using File
-> Export As (which will also open a new workflow canvas corresponding to the saved file). The saved
workflow may be opened in subsequent Reflex sessions using File -> Open. Saving the workflow in the
default Kepler format (.kar) is only advised if you do not plan to use the workflow with another computer.

5.2 Buttons

At the top of the Reflex canvas are a set of buttons which have the following functions:

• - Zoom in.

• - Reset the zoom to 100%.

• - Zoom the workflow to fit the current window size (Recommended).

• - Zoom out.

• - Run (or resume) the workflow.

• - Pause the workflow execution.

• - Stop the workflow execution.

The remainder of the buttons (not shown here) are not relevant to the workflow execution.

5.3 Workflow States

A workflow may only be in one of three states: executing, paused, or stopped. These states are indicated by

the yellow highlighting of the , , and buttons, respectively. A workflow is executed by clicking the
button. Subsequently the workflow and any running pipeline recipe may be stopped immediately by clicking the

button, or the workflow may be paused by clicking the button which will allow the current actor/recipe to
finish execution before the workflow is actually paused. After pausing, the workflow may be resumed by clicking

the button again.

EsoReflex ZAP tutorial

Doc. Number: ESO-287180
Doc. Version: 2.0
Released on: 2017-03-01
Page: 19 of 27

6 The muze_zap workflow

In this section we describe in more details the various elements of the muse_zap workflow, the steps it exe-
cutes, and its interactive features.

The muse_zap workflow supports the two main strategies of the ZAP code. The first evaluates the principal
components that characterize the sky residual directly on the field of view of the object to clean. This is the
case of the first demo dataset. The second evaluates the principal components on a sky residual cube (from a
dedicated sky observation) and then apply the results to the object cube. This is the case of the second demo
dataset.

In both strategies, the principal components are evaluated only on a portion of the field of view as defined by a
sky mask.

6.1 Creation of datasets

The first thing to know for understanding how the muze_zap workflow works and the adopted strategy, is
understand how the datasets are generated.

The creation of datasets is done by the actor DatasetOrganizer, which follows a series of rules, as in all other
workflows. The workflow handles these kind of files, which are identified by the category written in the PRO
CATG header keyword:

• Datacubes. Any category that contains the string DATACUBE is considered a datacube. These files
could be either the datacubes of the objects we have to clean (classified as DATACUBE_OBJECT by the
workflow), or the datacube of a residual sky background (classified as DATACUBE_SKY by the workflow).
This distinction is done on the basis of the PRO REC1 RAW1 CATG header keyword, which can be either
OBJECT or SKY. A DATACUBE_SKY is associated to a DATACUBE_OBJECT if they have the same
value of the OBJECT header keyword.

• Images. Any category that contains the string IMAGE_FOV is considered an image, which will be used
to create a sky mask. The images can be associated to the object (in this case they will be classified
as IMAGE_OBJECT by the workflow) or to a sky residual cube (in this case they will be classified as
IMAGE_SKY by the workflow). As for the datacubes, this distinction is done on the basis of the PRO
REC1 RAW1 CATG header keyword, which can be either OBJECT or SKY. An image is associated to a
datacube if they have the same value of the MJD-OBS header keyword.

• Sky masks. Sky masks have the category MASK_FINAL_CUBE. They can be classified as MASK_OBJECT
or MASK_SKY depending on the value of the PRO REC1 RAW1 CATG header keyword, as for the previous
cases. A sky mask is associated to a cube if they have the same MJD-OBS header keyword.

Each dataset contains a DATACUBE_OBJECT and an IMAGE_OBJECT. Eventually, they can have a MASK_OBJECT
assigned to it. The user can decide whether to use the provided mask or create a new one from the image.
These datasets reflect the first analysis strategy, where the principal components are evaluated on the object
datacube and then fitted.

EsoReflex ZAP tutorial

Doc. Number: ESO-287180
Doc. Version: 2.0
Released on: 2017-03-01
Page: 20 of 27

A DATACUBE_SKY with the corresponding IMAGE_SKY (and eventually a MASK_SKY) can be associated
to the dataset, if they target the same object. These datasets reflect the second analysis strategy, where the
principal components are evaluated on the sky cube and then fitted to the object datacube.

6.2 Workflow actors

6.2.1 Simple Actors

Simple actors have workflow symbols that consist of a single (rather than multiple) green-blue rectangle. They
may also have a logo within the rectangle to aid in their identification. The following actors are simple actors:

• - The Data Organiser actor.

• - The Data Set Chooser actor (inside a composite actor).

• - The Fits Router actor

• - The Product Renamer actor.

• - The Product Explorer actor (inside a composite actor).

Access to the parameters for a simple actor is achieved by right-clicking on the actor and selecting Configure
Actor. This will open an “Edit parameters” window. Note that the Product Renamer actor is a Jython script
(Java implementation of the Python interpreter) meant to be customized by the user (by double-clicking on it).

6.2.2 Lazy Mode

By default, all recipe executer actors in a pipeline workflow are “Lazy Mode” enabled. This means that when the
workflow attempts to execute such an actor, the actor will check whether the relevant pipeline recipe has already
been executed with the same input files and with the same recipe parameters. If this is the case, then the actor
will not execute the pipeline recipe, and instead it will simply broadcast the previously generated products to the
output port. The purpose of the Lazy mode is therefore to minimise any reprocessing of data by avoiding data
rereduction where it is not necessary.

One should note that the actor’s Lazy mode depends on the contents of the directory specified by BOOKKEEPING_DIR
and the relevant FITS file checksums. Any modification to the directory contents and/or the file checksums will
cause the corresponding actor when executed to run the pipeline recipe again, thereby rereducing the input
data.

EsoReflex ZAP tutorial

Doc. Number: ESO-287180
Doc. Version: 2.0
Released on: 2017-03-01
Page: 21 of 27

The forced rereduction of data at each execution may of course be desirable. To force a rereduction of all data
for all RecipeExecuter actors in the workflow (i.e. to disable Lazy mode for the whole workflow), set the
EraseDirs parameter under the “Global Parameters” area of the workflow canvas to true. This will then
remove all previous results as well. To force a rereduction of data for any single RecipeExecuter actor in
the workflow (which will be inside the relevant composite actor), right-click the RecipeExecuter actor, select
Configure Actor, and uncheck the Lazy mode parameter tick-box in the “Edit parameters” window that is
displayed. If the Lazy mode is switched off for an actor, all subsequent actors that use products from that one
will also reprocess the data, as they see new products.

6.3 Workflow composite actors

There are two main composite actors in the muse_zap workflow, which are dedicated to the 2 main steps of
the analysis:

• CreateMask. This actor uses the IMAGE_OBJECT or IMAGE_SKY to identify the regions
in the field of view that are dominated by the sky. Those regions will be used to evaluate the components
that describe the sky residuals. It also allows to edit a user-provided mask if present in the dataset. It is
an interactive actor, and it will be described in Section 7.1

• Creation of SVD from Sky cube (ZAP). It runs the ZAP code to create the sky
principal components and save them in the so-called SVD file. It is run only on DATACUBE_SKY frames.
It uses the output of CreateMask.

• Removal of Sky residual from object cube (ZAP). It runs the ZAP code
to remove residual sky contamination from the object cube. If the principal components were created
from the sky cube, they will be used. Otherwise, it will determine the sky principal components from the
object cube, using an appropriate mask defined in CreateMask.

EsoReflex ZAP tutorial

Doc. Number: ESO-287180
Doc. Version: 2.0
Released on: 2017-03-01
Page: 22 of 27

7 Removing the residuals of the sky background

In this section we describe the three main steps performed by the muse_zap workflow aimed at removing the
residual contamination of the sky background from a datacube.

7.1 Creation of Sky Mask

The CreateMask actor creates a sky mask, which is a 2D image file that covers the same field of view as the
datacube and with the same spatial resolution. Its values are 0 (for sky pixel, on which the residuals need to be
analyzed) and 1 (for object pixel, not to be used for the sky residual analysis). The category of the mask fits file
is MASK_FINAL_CUBE, and it is stored in the header. The mask has the same MJD-OBS as the associated
datacube.

In the case you are evaluating the principal components directly on the object cube, it is recommended to define
the sky regions on areas surrounding the object you are interested in, making sure not to include bright sources.

7.1.1 Description of the interactive window

An interactive window will be displayed (Figure 7.1), allowing the user to inspect the current sky mask (either
created from the IMAGE_FOV or provided in the INPUT_DATA_DIR) and, eventually, to change parameters
to change the mask definition.

The CreateMask interactive window is divided into 2 parts. On the left side, there is the plotting area with two
panels; on the right side there is the list of recipe parameters.

Both panels in the plotting area display the image of the field of view (IMAGE_FOV) and the current sky mask
(MASK_FINAL_CUBE) with a reversed color scheme.

In the top panel (named “Sky”) the region dominated by the sky are in gray-scale, whereas the regions dom-
inated by objects are in red. With this window, the user has the possibility to check whether there are bright
objects inside the empty sky regions. If so, the sky regions need to be redefined not to include bright objects.

In the bottom panel (named “Object”) the region dominated by the sky are in red, whereas the regions dominated
by objects are in gray-scale. With this window, the user has the chance to inspect the coverage of the sky region,
and decide whether there are other areas around the object, free of bright sources, that can be included in the
mask.

The red-colored pixels in the “Object” panel corresponds to the pixels that have value 0 in the created mask and
identify empty sky regions.

If present, the user supplied mask is used by default. Otherwise, the one created with default parameters is
used.

EsoReflex ZAP tutorial

Doc. Number: ESO-287180
Doc. Version: 2.0
Released on: 2017-03-01
Page: 23 of 27

7.1.2 Description of the parameters

The mask can be create either from the image of the field of view (IMAGE_OBJECT or IMAGE_SKY) or from
an user-provided mask (MASK_OBJECT or MASK_SKY, optional) present in the dataset.

The creation of a sky mask is regulated by a series of parameters that can be modified by the user through the
interactive window. When a parameter has been modified, press the button “Re-run Recipe” to calculate and
display the new mask. If you are happy with the results, press the button “Continue Wkf”.

If a mask is provided with the dataset, it will be displayed in the interactive window for inspection. The user has
the possibility to modify it, use it as it is, or discard it and create a new one from the IMAGE_OBJECT/SKY.
These 3 choices are determined by the value of the parameter edit input mask? in the interactive window
(Figure 7.1). The editing of the user-provided mask is regulated by the parameters n_grow and skybox.

If a mask is not provided with the dataset, the actor generates a new one from the IMAGE_OBJECT/SKY
(using default parameters) and displays it. The user has the possibility to modify it by changing the parameters
max_frac, min_frac, n_grow, and skybox.

The parameters that regulate the creation of the sky mask are the following:

• Tab Mask. Note: this Tab and parameters are available only if a user-provided mask is present in the
dataset.

– edit input mask?. It determines whether a user-provided mask has to be edited or not. The allowed
values are the following:

∗ use. The provided mask is the one displayed in the left panels and will be used as it is without
the creation of a new file.

∗ add. The provided mask will be edited using n_grow and skybox to add regions to it.

∗ discard. The input mask will not be used and a new one will be created using the IMAGE_FOV
and all the recipe parameters.

Values need to be entered without quotation marks. Default = use.

• Tab Flux Ranges

– min_frac and max_frac. The mask is created by rejecting the fraction min_frac of faintest spax-
els in the image, and retain the fraction max_frac of faintest spaxels for sky evaluation. Defaults
are min_frac=0.05 and max_frac = 0.15. This means that only the 5%-15% faintest pixels in
IMAGE_OBJECT/SKY are used to define the sky regions in the sky mask. These parameters have
an effect only if the mask is created from the IMAGE_OBJECT/SKY. The default values can also
be changed by double clicking on the corresponding parameter in the workflow main canvas before
starting the workflow. Warning: These parameters must follow the rule 0 ≤min_frac≤max_frac.

– n_grow. It enlarges the existing map spaxels containing sky by the specified number of pixels. It
does not modify regions defined with the skybox parameter. It n_grow is useful to enlarge isolated
sky regions. Large values might increase the risk to include bright objects among the sky regions.
Default= 3.

• Tab Sky Regions

EsoReflex ZAP tutorial

Doc. Number: ESO-287180
Doc. Version: 2.0
Released on: 2017-03-01
Page: 24 of 27

Figure 7.1: The interactive window associated to the CreateMask actor.

EsoReflex ZAP tutorial

Doc. Number: ESO-287180
Doc. Version: 2.0
Released on: 2017-03-01
Page: 25 of 27

– skyboxN Up to N = 10 sky regions that can be added to the existing mask to include areas with only
sky. Each region will be specified by 4 numbers indicating the xmin, xmax, ymin, and ymax pixel
position in the field of view. An entry of -1 -1 -1 -1 will not add a sky region to the existing mask. Val-
ues needs to be entered without quotation marks and need be space separated. Warning:n_grow
has no impact on the size of skyboxes. Default: -1 -1 -1 -1.

Tip: The suggested way to generate a custom sky mask is first to use the workflow to create one from
the IMAGE_OBJECT/SKY. The mask will be saved into the reflex end products directory with the string
MASK_FINAL_CUBE in its name. The user can either edit it (e.g., with the imedit task in IRAF) or copy it
directly into the INPUT_DATA_DIR and then re-run the workflow to have the possibility to further modify it. It is
important to remember that, when editing a mask via external tools, to maintain the same file structure, header
content, spatial coverage and sampling as the original mask.

Tip: If you want to design your mask only using skyboxes, without any flux-based spaxel selection, you have to
specify min_frac=max_frac=0 and at least one skybox. It is not allowed to set min_frac=max_frac=0 without
specifying any skybox.

Warning: if you specify an external SVD file via the External Sky components (full path) parameter, the mask
interactive window will not pop up because the mask is not needed.

7.2 Removing sky residuals via ZAP

The Post Processing (ZAP) actor executes the Zurich Atmosphere Purge (Soto et al. 2016) version 1.1
on the selected datacube to remove the residual sky contamination. The process is divided into two parts.

7.2.1 Calculation of the sky principal components (SVD)

The basic idea is to describe the sky residuals (onto areas that contain only sky) in terms of eigenspectra via
Single Value Decomposition (SVD). The components specified in the SVD will be then fitted on the spectra
containing the object in order to isolate the contribution of the sky residuals and subtract it.

This creation of a SVD file (category ZAP_SVD containing the sky principal components is performed directly
either on the object datacube (in the actor Removal of Sky residuals) or on the sky datacube if present
in the dataset (in the actor Creation of SVD from Sky cube).

The analysis is done on 11 wavelength segments (Table 1 in Soto et al. 2016), i.e. the ZAP_SVD contains the
components for each of the segments.

In the process, only the portion of the sky selected by the input mask (created in the actor CreateMask) will
be used.

7.2.2 Fit the sky principal components to the object

In this step, the components specified in the ZAP_SVD file are fitted to each spaxel in datacube to evaluate
and remove the residual sky contamination. As explained in the previous section, the ZAP_SVD file can be
computed either on the object datacube or on the sky datacube if present in the dataset.

EsoReflex ZAP tutorial

Doc. Number: ESO-287180
Doc. Version: 2.0
Released on: 2017-03-01
Page: 26 of 27

Alternatively, a pre-calculated ZAP_SVD can be passed via the parameter External Sky components (full
path), which is editable from the main reflex canvas. The specification of this parameter will override any other
ZAP_SVD eventually by the workflow.

7.2.3 Main parameters of the ZAP code

The parameters that regulate the ZAP code and that can be specified by the user (either from the main reflex
canvas, or inside the ZAP composite actor) are the following:

• Eigenspectra_detection_type (optimizeType) Optimization method to compute the number of eigen-
spectra used for each wavelength segment. Accepted values are: none, normal, enhanced. If none, the
number of eigenspectra must be specified with nevals or pevals. normal and enhanced refers to different
algorithms to automatically compute the number of eigenspectra. Default: normal.

• Percentage of eigenspectra(pevals).Allow to specify the percentage of eigenspectra used for each
segment. Provide a single value that will be used for all of the segments. If pevals ≤ 0, the parameter
nvals will be used instead (see below). Default: 1.

• number of eigenspectra(nvals). It specifies the number of eigenspectra to use when optimizeType =
none. It is a single value that will be used for all of the segments. It has an effect only if pevals ≤ 0.
Default: 30.

• External Sky components (full path). Path of an input FITS file containing a Singular Value Decompo-
sition (SVD) computed on empty sky regions. none computes SVD on the sky regions specified in the
sky mask. Specifying the SVD via a file makes the ZAP code much faster, this is useful when you need
to optimize other parameters. Default: ’none’.

• median_filter(cfwidthSVD). Window size for the continuum filter, for the SVD computation. See section
2 of Soto et al. (2016). Default: 500.

• median_filter(cfwidthSP). Window size for the continuum filter used to remove the continuum features
for calculating the eigenvalues per spectrum. Smaller values better trace the sources. An optimal range
of is typically 20 – 50 pixels. Default: 30.

• zeroth sky removal (zlevel). Method for the zeroth order sky removal: ’none’, ’sigclip’ or ’median’.
Default: ’median’.

• continuum filter method (ctype). Method for the continuum filter: ’median’ or ’weight’. For the ’weight’
method, the definition of a zeroth order sky is required (see zlevel). Default: ’weight’.

• CleanNaN. If True, the NaN values are cleaned. Spaxels with more then 25% of NaN values are removed,
the others are replaced with an interpolation from the neighbors. The NaN values are reinserted into the
final datacube. If set to False, any spaxel with a NaN value will be ignored. Default: ’True’.

For a proper description of the ZAP code and all its parameters, we refer the interested reader to the its docu-
mentation (http://muse-vlt.eu/science/tools/) and publication (Soto et al. MNRAS, 458, 3210).

EsoReflex ZAP tutorial

Doc. Number: ESO-287180
Doc. Version: 2.0
Released on: 2017-03-01
Page: 27 of 27

Figure 7.2: spectrum the central regions of the demo datacube (radius 5 pixels) before (black) and after (red)
the post processing with ZAP. The used mask was obtained with n_grow=1 min_max=0.05, max_frac=0.15,
skybox1=10 80 10 20, and skybox2=60 70 10 80, respectively.

The user can use any datacube viewer (e.g., QFitsView; www.mpe.mpg.de/~ott/QFitsView/) to in-
spect the results.

Figure 7.2 shows the spectrum the central regions of the first demo datacube (radius 5 pixels) before and after
the post processing with ZAP.

Warning: The user will be notified by a pop-up window in the case the code crashes for memory issues. See
also Section 4.1.

	Introduction and scope
	Installation
	Installing Reflex workflows via macports
	Installing Reflex workflows via rpm/yum
	Installation with the install_esoreflex script
	Using your preferred Python environment

	System requirements
	Quick start: reducing the demo data
	Processing your own datacubes

	About The Reflex Canvas
	Saving And Loading Workflows
	Buttons
	Workflow States

	The muze_zap workflow
	Creation of datasets
	Workflow actors
	Simple Actors
	Lazy Mode

	Workflow composite actors

	Removing the residuals of the sky background
	Creation of Sky Mask
	Description of the interactive window
	Description of the parameters

	Removing sky residuals via ZAP
	Calculation of the sky principal components (SVD)
	Fit the sky principal components to the object
	Main parameters of the ZAP code

